Optical polarization of molecules
Marcis Auzinsh, Ruvin Ferber

This book explains the theory and methods by which gas molecules can be polarized by light, a subject of considerable importance for what it tells us about the electronic structure of molecules and properties of chemical reactions. Starting with a brief review of molecular angular momentum, the text goes on to consider resonant absorption, fluorescence, photodissociation and photoionization, as well as collisions and static fields. A variety of macroscopic effects are considered, among them angular distribution and the polarization of emitted light, ground state depopulation, laser-induced dichroism, the effect of collisions and external magnetic and electric field effects. Most examples in the book are for diatomic molecules, but symmetric-top polyatomic molecules are also included. The book concludes with a short appendix of essential formulae, tables for vector calculus, spherical functions, Wigner rotation matrices, Clebsch-Gordan coefficients, and methods for expansion over irreducible tensors.

Optically polarized atoms: understanding light-atom interactions
Marcis Auzinsh, Dmitry Budker, and Simon M. Rochester

Optically Polarized Atoms is addressed at upper-level undergraduate and graduate students involved in research in atomic, molecular, and optical Physics. It will also be useful to researchers practicing in this field. It gives an intuitive, yet sufficiently detailed and rigorous introduction to light-atom interactions with a particular emphasis on the symmetry aspects of the interaction, especially those associated with the angular momentum of atoms and light. The book will enable readers to carry out practical calculations on their own, and is richly illustrated with examples drawn from current research topics, such as resonant nonlinear magneto-optical effects. The book comes with a software package for a variety of atomic-physics calculations and further interactive examples that is freely downloadable from the book's web page, as well as additional materials (such as power-point presentations) available to instructors who adopt the text for their courses.

In: Theory of Chemical Reaction Dynamics (NATO Science Series II: Mathematics, Physics and Chemistry)
Editor: Antonio Laganà and, György Lendvay

The theoretical treatment of chemical reaction dynamics has undergone spectacular development during the last few years, prompted by experimental progress. Beam production, spectroscopic detection using high resolution, polarized lasers allowing energy and angular momentum selection, etc. have advanced so much that the experiments now offer detailed scattering information for theory to explain and rationalize. At the same time, advances in computing and networking technologies for heterogeneous and grid environments afford new possibilities for theoretical studies of chemical reactivity. As a consequence, calculation of atom+diatom reactions has become routine, accurate methods have been developed to describe reactions in tetra-atomic systems, nonadiabatic reactions are being studied in simultaneous experimental and theoretical efforts, and statistical theories of unimolecular reaction dynamics are applied to systems that were a mystery a few years ago. The book represents a snapshot of the current status of research in reaction dynamics, focusing especially on accurate time-dependent and time-independent methods of quantum scattering, treatment of non-adiabatic processes, studies of associative and inelastic collisions, calculation of potential surfaces.

In: Modern Optics and Photonics: Atoms and Structured Media
Editor: Gagik G. Gurzadyan , Gagik Yu Kryuchkyan

This volume is based on the works presented at the conference Modern Problems in Optics and Photonics-2009, held in Yerevan Armenia. Covering virtually all actual themes in Optics: Structured media and quantum nanostructures, Quantum optics and quantum information, Spectroscopy and dynamics of atoms, both theoretical and experimental works are examined and discussed extensively. This volume would capture the interest of experienced scientists as important, original results of 27 leading researchers from Armenia, Australia, Germany, Greece, India, Latvia, Russia, Singapore and United Kingdom are included. Surely, this volume could serve as an advanced textbook for graduate and undergraduate students as it contains not only the original works of prominent authors, but also detailed introductions and descriptions of early results of the presented branches of the optics.


Šajā lapā atrodamie materiāli ir domāti nekomerciālai lietošanai studentiem, pētniekiem un visiem interesentiem. Tos nedrīks lietot komerciālos nolūkos. Daļa materiālu ir aizsargāti ar autortiesībām. Materiālu tālākai pārpublicēšanai ir nepieciešams saņemt autortiesību īpašnieka atļauju. Parasti tas ir izdevējs, bet atsevišķos gadījumos – Mārcis Auziņš.