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The rate coefficients for capture of charged particles by spherical top molecules, which by isotopic substitution become
symmetric top molecules with small dipole moment, are expressed analytically for the two limiting cases of weak coupling of
the molecular angular momentum to the collision axis (dominating Coriolis interaction, the fly-wheel [FW] approximation)
and strong coupling (negligible Coriolis interaction, the adiabatic channel [AC] approximation). The comparison leads to
relations between rate coefficients for ultra-low (FW) and moderate (AC) temperatures and defines the range of parameters
for which the analytical expressions become insufficient and a numerical treatment is necessary.

Keywords: collision dynamics; adiabatic channels; capture processes

1. Introduction

The problem of the capture of charged particles by dipolar
molecules is of interest in the field of ion–molecule reac-
tions and electron attachment processes involving complex
formation (see, e.g., [1,2]). If the molecules are rapidly ro-
tating, i.e., if the Massey parameters (the products of char-
acteristic frequencies with respect to transitions between
different rotational molecular states and the characteristic
collision time) are large, the capture problem can be treated
within the adiabatic channel (AC) model [3]. This approach
was used in the perturbed rotational (PR) state method [4],
the adiabatic invariance (AI) method [5] and the adiabatic
capture centrifugal sudden (ACCS) approximation [6]. As
all of these models were shown to be equivalent to each
other, numerical differences were due to more or less ade-
quate calculational simplifications [7,8]. The applicability
of the AC approach and the definition of the respective
Massey parameters were discussed in Nikitin and Troe [9]
in connection to different temperature regimes – ultra-low,
low and moderate. However, even if the Massey parame-
ters for transitions between different rotational states are
large, there exists yet another prerequisite for the appli-
cation of the AC approximation: the AC potentials at the
inter-particle distances R important for capture need to be
defined unambiguously by locking of the molecular angular
momentum j to the collision axis. This locking implies the
transformation from an asymptotic set of quantum numbers
J, j, � to a set of quantum numbers J, j,m for the ‘colli-
sion complex’ [10]. The locking distance RL is roughly

∗Corresponding author. Email: shoff@gwdg.de

determined by the condition that the frequency of rotation
ωrot(R, J ) of the collision axis at total angular momentum
J is about equal to the characteristic precession frequency
ωprec(R, j ) of j about R. The uncertainty δRL in the locking
distance RL, the latter being found from the condition

ωrot(RL, J ) = ωprec(RL, j ), (1)

is small (i.e. δRL � RL) when the anisotropic potential,
with increasing R, decreases faster than the centrifugal en-
ergy that falls as R−2. For relatively slowly decreasing po-
tentials, e.g., for charge–quadrupole or resonance dipole–
dipole interactions (falling as R−3), the ratio δRL/RL is
not small enough to assure a sudden locking of j to R in the
locking region. This leads to some specific features of the
complex formation such as discussed in Dashevskaya et al.
[11] and Nikitin and Troe [12].

If the inter-particle interaction, on the other hand, is of
first-order charge–dipole type, as is the case for a symmetric
top molecule for j > 0 (for j = 0, the first-order charge–
dipole interaction disappears), ωprec(R, j ) decreases as R−2

and Equation (1) has no solution for finite RL. Although
this indicates a difficulty in employing AC potentials, the
latter have been defined and used in classical calculations of
capture cross-sections and rate coefficients under the con-
dition J � j [13–15]. Then, the difference between J and
� disappears, and with it appears the possibility to label
asymptotic states by J and m (i.e. the projection of j onto
the collision axis R). In the adiabatic approximation with
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respect to the states of the rotor with quantum numbers
j, k (with k being the quantum number of the projection
of j onto the symmetry axis of the top), the charge–dipole
interaction is determined by the projection of the average
dipole moment μ̄D(j, k) = μDk/

√
j (j + 1) (which is di-

rected along j) onto the collision axis. Then, the capture
condition, for pure charge–dipole interaction, is written as
J ≤ Jc, where Jc is determined from the balance of the
centrifugal repulsion and the electrostatic attraction of the
partners. Qualitatively, this condition approximately reads

�
2J 2

c

2μR2
≈ qμ̄D

R2
, (2)

where μ is the reduced mass of the collision pair and q
is the charge of the ion. The value of Jc then is of the
order Jc ≈ √

2δ, where δ is a dimensionless characteristic
parameter,

δ = qμμ̄D/�
2. (3)

If μ̄D ≈ 1 a.u. (for a typical polar molecule) and μ ≈
104 a.u. (collisions with an ion of 10 atomic mass), the
value of Jc is about 102, which validates the use of the
classical approximation. However, for molecules with very
small dipole moments that arise, for instance, from isotopic
substitution of one of the atoms of the spherical top (see
Appendix), Jc can be of the order unity. Then, a quantum
treatment of capture becomes necessary that takes into ac-
count a partial locking of j to R, and even goes (for very
small μ̄D) to the limit where j is almost decoupled from R
(the so-called free-wheel [FW] limit of charge–quadrupole
[11] and resonance dipole–dipole [12,16] interactions).

The aim of the present work is to study rate coeffi-
cients for capture of charged particles by symmetric top
molecules with small dipole moments at low collision en-
ergies and temperatures by using two limiting analytical ap-
proaches, the FW approximation in the quantum collision
regime (ultra-low temperatures) and the AC approximation
for the adjacent classical regime (moderate temperatures),
considering the case of an anisotropic first-order charge–
dipole interaction on the background of an isotropic charge-
induced dipole interaction. Of particular interest is the ques-
tion at which energies (or temperatures) the transition from
the FW to the AC regime is located.

The plan of the paper is the following. Section 2 de-
scribes calculations with the FW interaction. In Sections
3 and 4, we discuss the quantum s-wave FW and classical
AC rate coefficients. Section 5 compares the quantum and
classical calculations and defines the region where results
bridging the FW and AC limits are needed. Section 6 con-
cludes the paper. Appendix presents a simple model for
estimation of the small dipole moments for symmetric top
molecules that originate from spherical tops upon isotopic
substitution of one of its atoms.

2. Fly-wheel potential

The FW approximation to the capture with an anisotropic
interaction potential is obtained by developing a perturba-
tion theory with respect to the charge–dipole interaction
in the basis of free wave functions, for both intrinsic and
relative rotation. The perturbation approach is valid for
molecules with small dipole moments. The physical reason
for the existence of small dipole moments (and their pos-
sible range) for symmetric top molecules is discussed in
Appendix. In general, the FW potential remains isotropic
in the succession of perturbation orders, but each step de-
fines a new basis, the states of which are coupled by radial
motion of the partners. The simplification of using the FW
approach is attained either when one can restrict oneself to
the lowest order or when the improved basis functions are
weakly coupled by the radial motion of the partners. The
former applies to charge–quadrupole [11] and resonance
dipole–dipole [12,16] interactions, when higher-order cor-
rections can be neglected because they fall off faster with
increasing R than the leading second-order term. The latter
applies to charge–dipole interactions, when the dominant
change in the basis is R-independent and the leading terms
of higher-order corrections fall off similarly as the leading
second-order term, being proportional to R−2. Each order of
the series representation of the interaction starts with a R−2

term, which is followed by correction terms proportional to
R−4, R−6 etc. The former arises from the virtual transitions
j, k, � → j ′, k′, �′, with j, k = j ′, k′, and the latter from
j, k �= j ′, k′. In the following, the correction terms that fall
faster than R−4 are neglected, while those proportional to
R−4 can be accounted for by simple renormalisation of the
polarisability α of the top, making it j, k-dependent [13,15].
Since in the scaled variables, α disappears (see below),
we will not dwell on this point, and concentrate only on
the leading term of the effective interaction that arises from
the virtual transitions j, k, � → j, k, �′ and which features
the R−2 dependence. Here, the application of the central-
field higher-order FW potential is limited only by the con-
vergence of the perturbation series with respect to the pa-
rameter responsible for the charge–dipole interaction.

Within the above approximations, the effective ani-
sotropic interaction, taken to be diagonal in the quantum
numbers j, k is written as

V̂ = �
2 l̂

2

2μR2
+ qμ̄D(j, k)

ĵ√
j (j + 1)

R

R3
− q2α

2R4
. (4)

The first term on the right-hand side (r.h.s.) of Equation
(4) is the centrifugal energy expressed through the operator
of the relative angular momentum, the second is the weak-
field charge–dipole interaction containing the projection of
the average dipole moment directed along the vector j onto
the collision axis R, and the third is the charge-induced
dipole interaction. If R is taken as the quantisation axis
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in the J, j,m representation, and μ̄D(j, k) is expressed as
μ̄D(j, k) = μDk/

√
j (j + 1) (see Section 1), the first and

the second terms on the r.h.s. of Equation (4) yield the
familiar expressions for their expectation values used in the
AC treatment [13,15]:

〈
J, j,m

∣∣∣∣∣ �
2 l̂2

2μR2

∣∣∣∣∣J, j.m

〉

= �
2

2μR2
(J (J + 1) − 2m2 + j (j + 1))〈

J, j,m

∣∣∣∣∣ qμ̄D√
j (j + 1)

ĵR

R3

∣∣∣∣∣J, j,m

〉
= qμDkm

j (j + 1)R2
(5)

However, in our case, the axis R is not a good quantisation
axis, and therefore, we prefer to deal with the interaction
in its operator form, as in Equation (4), rather than in the
form of expectation values as normally used in the AC
treatment. Then, passing to the scaled quantities ρ = R/RL

and ε = E/EL for the distance and the energy as well as
κ = kRL for the wave vector (with RL = q

√
μα/� and

EL = �
2/μR2

L), the scaled interaction υ̂ = V̂ /EL assumes
the form

υ̂(ρ) = l̂2

2ρ2
+ δĵρ√

j (j + 1)ρ3
− 1

/
2ρ4. (6)

The FW potential for fixed quantum numbers J, j, k
is now written as a perturbation series with respect to the
charge–dipole interaction in the J, j, k, � basis for a space-
fixed quantisation axis. With the quantum number � speci-
fying the zero-order term of the perturbation series, the ef-
fective potential between an ion and a rotor in the rotational
state j, k (with k implicitly included in δ from Equation (3))
for the total angular momentum J, FWυ

(J,j )
� (ρ), becomes

FWυ
(J,j )
� (ρ) = FWc

(J,j )
� (δ)/2ρ2 − 1/2ρ4. (7)

The coefficients FWc
(J,j )
� (δ) start with the zero-order

term �(� + 1) arising from the first term on the r.h.s. of
Equation (6), while other terms are calculated as a per-
turbation series with respect to the interaction represented
by the second term in the r.h.s. of Equation (6). Here, �

runs from |J − j | to J + j and, in the case J = j , it starts
from � = 0. We now concentrate on the latter case, which
is appropriate for perturbed s-wave scattering where the
effective potential is attractive since the zero-order term
disappears. For higher waves, with � > 0, the effective po-
tential, for small δ, is repulsive at large distances, such that
the capture at low collision energies does not take place.

We have calculated FWc
(j,j )
0 (δ) analytically up to fourth

order using the standard techniques [17]. The result read

FWc
(j,j )
0 (δ) = −2

3
δ2 + 2

9

(
11

15
+ 1

5j (j + 1)

)
δ4 + O(δ6).

(8)

It is noteworthy that the series representation of
FWc

(j,j )
0 (δ) in Equation (8) performs well at δ = δ∗ = 0.64

when FWc
(j,j )
0 (δ) nearly equals −1/4 and the capture chan-

nel for the attractive R−2 interaction opens up ([18], section
35). This can be judged from the consecutive values of the
terms for δ = δ∗ on the r.h.s. of Equation (8). We thus ex-
pect that the FW approximation in the form of Equation
(8) is applicable for the description of capture at values of
δ below (δ < δ∗) and slightly above (δ > δ∗) the thresh-
old. In the latter case, the representation of FWc

(j,j )
0 (δ) by

Equation (8) might be worse, but this does not affect the
capture probability since the latter quickly levels off to its
maximal value of unity (the so-called unitary limit). With
this feature of the probability, the expression in Equation
(8) can be safely used up to δ = 1 (see below). For higher
values of δ, the series expression for FWc

(j,j )
0 (δ) in Equation

(8) diverges as indicated by the change in the qualitative
behaviour of FWc

(j,j )
0 (δ) (from decreasing to increasing).

Besides, for δ > 1, the FW capture rate coefficient, beyond
the leading s-wave term, will be contaminated by higher
waves, which are neglected in this work. Since the con-
vergence of the perturbation series is an important point
of the present treatment, we have numerically calculated,
within the basis J = j , the lowest eigenvalue c

(j,j )
0 (δ) of

the operator l̂2 + 2δĵρ/
√

j (j + 1)ρ that, if represented as

a series in δ, generates FWc
(j,j )
0 (δ). The results are shown in

Figure 1 by the curves for j = 1 and j ≥ 3 (with that for
j = 2 lying between them), where the quadratic and quartic
approximations from Equation (8) are compared with ac-
curate numerical results. We see that the above prediction
of a good performance of the perturbation series for δ < 1
is substantiated by the accurate numerical results.

We conclude from Equation (8) and from Figure 1 that
FWc

(j,j )
0 (δ) depends on j rather weakly. This has the fol-

lowing practical significance. Extrapolating the results to
higher j (and, therefore, to higher J = j ), we observe that
the quantity J then can be considered as a classical vector,
and its direction can be taken as the quantisation axis for
the relative angular momentum vector l̂. In other words,
the quantity FWc

(j,j )
0 (δ)|j>>1 = FWc0(δ) can be regarded as

the lowest eigenvalue of the operator l̂2 + 2δ cos γ , where
γ is the angle between ρ and the quantisation axis. The δ

dependence of the lowest eigenvalue of this operator was
studied in Dashevskaya et al. [19], where it was repre-
sented as Ds(d) (with d = δ). This observation makes it
possible to use the results of the numerical fitting of the
electron–molecule capture probabilities in Dashevskaya
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2006 M. Auzinsh et al.

Figure 1. Comparison of the series representation of FWc
(j,j )
0 (δ)

from Equation (8) with accurate results for the lowest eigenvalue
c

(j,j )
0 (δ) of the operator l̂2 + 2δĵρ/

√
j (j + 1)ρ in the J = j basis.

Notes: Shown are the accurate results for j = 1 (red curve a)
and j ≥ 3 (red curve b), with the results for j = 2 lying be-
tween them (not shown). The dashed blue line corresponds to
the j-independent quadratic approximation, and the green dotted
lines correspond to the j-dependent quartic approximation from
Equation (8).

et al. [20] within the sudden approximation for approxi-
mate calculations of the ion–molecule capture probabili-
ties within the adiabatic approximation; see the following
section.

3. s-wave FW capture probabilities, cross-sections
and rate coefficients

The s-wave capture in the field of the FWυ potential is
calculated from the Schroedinger equation, which, in terms
of the scaled variables ρ = R/RL and κ = kRL, takes the
form

{
− d2

2dρ2
+

FWc0(δ)

2ρ2
− 1

2ρ4

}
ψ(ρ, κ) = κ2

2
ψ(ρ, κ).

(9)
Two points deserve mention:

(1) The lack of a dependence of FWc0(δ) on j in
Equation (9) means that the capture probability
FWP (κ, δ) derived from Equation (9) does not de-
pend on j.

(2) The equality FWc0(δ) = Ds(d)|d=δ means that an-
alytical expressions for capture probabilities, for
different values of Ds depending on d, apply as
well to FWP (κ, δ).

Explicitly, (i) and (ii) imply that the capture probabil-
ities FWP (κ, δ) can be identified with the fitting analyti-
cal expressions for P

app
0,0 (κ, d) from equations (3)–(8) of

Dashevskaya et al. [20] or obtained by a direct numeri-
cal integration of the capture equation (Equation (9)) with
j-independent coefficient FWc0(δ) = −2δ2/3 + 22δ4/135.

The probabilities, FWP (κ, δ), in turn, define the scaled
s-wave j-independent rate coefficient FWχs(κ, δ), i.e., the
ratio of the κ-dependent dependent rate coefficient to the κ-
independent Langevin rate coefficient kL = 2πq(α/μ)1/2,
as

FWχs(κ, δ) = (
1
/

2κ
)

FWP (κ, δ). (10)

In the absence of charge–dipole interaction (i.e. for δ =
0), Equation (10) can be approximated analytically by the
expression

FWχs(κ, δ)
∣∣
δ=0

= 1 − 0.25 exp(−1.387κ) − 0.75 exp(−4.871κ)

2κ
, (11)

(see equation (2.5) of Dashevskaya et al. [19]) which gives
the correct Vogt–Wannier limit of FWχs(κ, δ)

∣∣
δ=0,
κ=0

= 2 for

κ → 0 (corresponding to the Bethe limit of a finite value of
the rate coefficient at κ → 0) and the maximal s-wave rate
coefficient for κ � 1. For strong charge–dipole interaction
(large δ), Equation (10) approaches the unitary limit for
arbitrary κ , i.e.

maxχs(κ) = FWχs(κ, d)
∣∣
δ�δ∗ = 1/2κ, (12)

and shows a 1/κ divergence as κ → 0. This divergence
represents a violation of the Bethe condition of a finite
value of the rate coefficient at κ → 0.

The requirement of large δ for Equation (12) to be valid
should be compatible with the requirement that the FW
representation of the interaction potential is still valid. As a
compromise between these two conditions, we consider the
range 0 < δ < 1. For the maximal value of δ in this range,
i.e.δmax = 1, the probability FWP (κ, δ)

∣∣
δ=1

is close to unity
(see figure 4 from Dashevskaya et al. [20]).

The s-wave FW rate coefficients, FWχ̄s(θ, δ), are ob-
tained by averaging of FWχs(κ, δ) through

FWχ̄s(θ, δ) =
∫ ∞

0

FWχs(κ, δ)F (κ, θ )dκ (13)

over the Boltzmann distribution

F (κ, θ ) = (2πθ )−1/2 exp(−κ2/2θ )
2κ2

θ
(14)

that contains the scaled temperature

θ = (
q2μ2α/�

4
)
kBT . (15)
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Figure 2. Comparison of s-wave FW (left-hand area, full blue
lines) and classical AC capture rate coefficients (right-hand area,
full green lines)
Notes: The curves are labelled by the values of δ; see text. The
dashed lines stand for FWχ̄max

s (θ ) and ACClχ̄min(θ ) rate coefficients.
The intermediate area corresponds to the range of parameters θ
and δ not covered by the present analytical treatment. The horizon-
tal dashed black line corresponds to the Langevin rate coefficient.

With analytical formulae for the probabilities, the calcula-
tion of FWχ̄s(θ, δ) can be easily performed by direct inte-
gration. In particular, the maximal FW rate coefficient that
corresponds to the unitary limit is

FWχ̄max
s (θ ) = 1/

√
2πθ. (16)

Graphs of FWχ̄s(θ, δ) versus θ for 0 < δ < 1 are shown
in Figure 2 by full blue lines up to θ = 0.05, where
FWχ̄s(θ, δ) are still visibly larger than the Langevin asymp-
totics (dashed black line). The graph of FWχ̄max

s (θ ), ex-
tended until its crossing with the Langevin asymptotics,
corresponds to the dashed blue line. With the thermally av-
eraged counterparts of FWχs(κ) from Equation (11) and
of FWχ̄max

s (θ ) from Equation (16), the δ dependence of
FWχ̄s(θ, δ) can be approximately represented by the in-
terpolation formulae from Dashevskaya et al. [19]. In
particular, at very low temperatures, the FWχ̄s(θ, δ) are
proportional to θ−γ , where γ =

√
FWc0 + 1/4 − 1/2 and

−1/4 < FWc0 ≤ 0. Note that γ is smaller than 0.5, which
implies a slower divergence of FWχ̄s(θ, δ) than that of
maxχ̄s(θ ), which in turn is the same as that of the classi-
cal AC rate coefficient (see Section 5). As an interesting
observation, we mention that at FWC0 = −1/4 (which cor-
responds to δ = δ∗ = 0.64) when the channel for the pure
charge–dipole interaction becomes completely open, the
capture rate coefficient FWχ̄s(θ, δ∗) is still noticeably lower
that maxχ̄s(θ ). We interpret this as a consequence of the par-
tial reflection of the incoming s-wave travelling across the
long-range charge–dipole attractive potential proportional
to ρ−2 from the short-range drop caused by the charge-
induced dipole potential proportional to ρ−4.

Finally, we note that the divergence of FWχ̄s(θ, δ) at
θ → 0 is the result of the adopted approximation that the
states with the quantum numbers k and −k (or the states
with given |k| and different parity) are degenerate. This
degeneracy may be lifted by certain interactions (e.g. hy-
perfine coupling) that lead to the K-doubling phenomenon.
The K-doubling can be neglected if the non-adiabatic cou-
pling between the two components falls into the sudden
regime, and it certainly cannot be neglected if the collision
energy is comparable to the K-doubling splitting. For the
CH3D molecule, considered in Section 5, the K-doubling
splitting is in the kilohertz (kHz) range [21], implying that
the K-doubling feature, for CH3D + H+ capture, has to be
taken into account only at extremely low temperatures. A
rough estimate of the limiting zero-temperature capture rate
coefficient, ignoring all fine details of hyperfine coupling,
can be obtained by the perturbation approach, by calculat-
ing the increase in the effective polarisability, which is due
to the mixing of the K-doublet components by the elec-
tric field of the impinging ion. Standard calculations show
that the FW interaction ∝ R−2 transforms into a K-doublet
charge-induced dipole interaction ∝ R−4. When this term
is combined with the conventional charge-induced dipole
interaction, it implies an increase in the polarisability α by
a quantity �α, which is of the order of δ2/�ε, where �ε

is the K-doubling spacing (in scaled units). Therefore, in
the limit κ → 0, where the condition κ2/2 � �ε is au-
tomatically satisfied, the VW rate coefficient VWχ should
be replaced by an ‘effective VW’ (EVW) rate coefficient
EVWχ

VWχ = 2 → EVWχ = 2
√

1 + �δ2/�εα, (17)

where the numerical coefficient � (which also enters into
EVWχ ) results from the details of the hyperfine interac-
tion. The second term in the root can be quite large for
small �ε, and the quantity EVWχ (�ε, δ) sets an upper limit
for the seemingly diverging rate coefficients FWχ̄s(θ, δ) at
θ → 0. Note, however, that if the two K-components be-
long to different spin states of identical nuclei of the rotor,
the first-order charge–dipole interaction vanishes, and both
FW capture rate coefficients and their EVW counterparts
become zero. Finally, we mention that the intermediate non-
adiabatic regime between the sudden and the adiabatic lim-
its in a situation similar to K-doubling was elaborated in
Auzinsh et al. [22] for the case of the �-doubling in the
application to the capture of NO(X2�1/2, j ) by an ion.

4. Classical AC probabilities, cross-sections
and rate coefficients

Within the AC approximation, the anisotropic effective po-
tential in Equation (4) is replaced by its expectation value
for given quantum numbers J, j,m; see Equation (5). In
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this way, we get

ACυ(J,j )
m (ρ) =

ACc
(J,j )
m (δ)

2ρ2
− 1

2ρ4
, (18)

with

ACc(J,j )
m (δ) = J (J + 1) − 2m2 + j (j + 1)

+ 2δm/
√

j (j + 1). (19)

For a classical approximation of the relative motion, the
capture probabilities are approximated by step-functions �

when the collision energy κ2/2 exceeds the height of the
effective potential in Equation (18), i.e.

ACP (J,j.)
m (κ, δ) = �

(
2k − ACc(J,j )

m (δ)
)
. (20)

Within yet another approximation, which is used in
many applications [13–15], J is assumed to be large, and
the terms 2m2 and j (j + 1) are neglected in comparison
with J (J + 1) ≈ J 2. In this approximation, which will be
called the classical AC (ACCl) approach, the expression for
the transition probability assumes the form

ACClP (J,j.)
m (κ, δ) = �(2k − 2δm/

√
j (j + 1) − J 2). (21)

Equation (21) yields the maximum J for capture, J̃m,

as

J̃ 2
m(κ, δ) = (2κ − 2δm/

√
j (j + 1))�

× (1 − δm/κ
√

j (j + 1)), (22)

where the step-function � opens (or closes) m-specific cap-
ture channels.

Writing

ACClχj (κ, δ) = 1

2κ(2j + 1)

j∑
m=−j

∫ ∞

0

ACClP (J,j.)
m (κ, δ)2JdJ

(23)

and performing the integration over J, we get

ACClχj (κ, δ) = 1

(2j + 1)

j∑
m=−j

(
1 + δm

κ
√

j (j + 1

)
�

×
(

1 + δm

κ
√

j (j + 1

)
. (24)

The consecutive opening of capture channels produces
slight undulations in the dependence of Clχj (κ, δ) on κ . The
undulations disappear in the large j-limit of Equation (21),

which is given by

ACClχj�1(κ, δ) = 1 +
(

−1

2
+ κ

4δ
+ δ

4κ

)
� (δ − κ).

(25)

To be consistent with the j-independence of the FW
rate coefficients of Section 4, in what follows, Equation
(25) is used for any j. Note that, for κ < δ, only half of
the Langevin contribution survives since the other half is
quenched by the repulsive charge–dipole interaction.

The two limiting cases of Equation (25) are the
Langevin limit

ACClχ (κ, δ)j�1

∣∣
δ=0

= 1 (26)

and the charge–dipole dominated limit

ACClχ (κ, δ)j�1

∣∣
δ�κ

= ACCl,c-dipχ (κ, δ) == δ

4κ
. (27)

The 1/κ divergence of C-dipχ (κ, δ) at small κ can be
traced back to the fact that the finite target area (i.e. the non-
zero range of impact parameters) corresponds to capture
without potential barrier. We note in passing that δ in the
numerator on the r.h.s. of Equation (27) equals twice the
number of the ACCl channels, 2ACClN , open for capture in
the limit κ → 0. This can be directly seen by calculating
ACClN in the high-j limit as

ACClN = 1

2j

∫ j

−j

J̃ 2
m(κ, δ)

∣∣
κ=0

dm = δ/2. (28)

Within the classical collision picture, Equation (25) is
meaningful only for δ � 1. Nonetheless, it is notewor-
thy that, for small κ , the asymptotics of ACClχ (κ, δ) with
δ = 2, i.e., ACClN = 1 coincides with the s-wave unitary
limit where the capture probability in a single open capture
channel equals unity.

The thermal counterpart of Equation (25) is

ACClχ̄j (θ, δ) =
∫ ∞

0

ACClχj (κ, δ)F (κ, θ )dκ. (29)

Explicit calculation yield [23]

ACClχ̄j�1(θ, δ) =

= 1 + 1

2
√

π

δ√
2θ

+ 1

2
√

π

√
2θ

δ

(
1 − exp(−δ2

/
2θ )

)
− 1

2
Erf

(
δ√
2θ

)
, (30)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
L

at
vi

a]
 a

t 2
2:

20
 1

0 
O

ct
ob

er
 2

01
3 



Molecular Physics 2009

where Erf(x) is the error function. The limiting expressions
for ACClχ̄(θ, δ) are

ACClχ̄(θ, δ) =
{

1, for δ/
√

θ � 1
δ/2

√
2πθ for δ/

√
θ � 1

. (31)

Graphs of ACClχ̄(θ, δ) for δ ≥ 4 in the region of in-
terplay between the asymptotics given by Equation (31)
are shown in Figure 1 by full green lines. The graph of
ACClχ̄ (θ, δ)

∣∣
δ=2

, extended to small θ until the convergence
to its asymptotics in Equation (31), corresponds to the
dashed green line.

5. Relation between FW and ACCl capture
rate coefficients

The FW approach performs well under the condition κ � 1
and δ ≤ 1, while the ACCl approximation requires κ � 1
and δ � 1. Though these conditions are mutually exclu-
sive, one expects that the s-wave (i.e. FW) and classi-
cal (i.e. ACCl) rate coefficients will show some kind of
relation, as was found earlier for capture in the field of
isotropic charge-induced dipole interaction [24]. We con-
sider now the simplest case when FW capture occurs in
the first channel being completely open but still below the
second threshold (i.e. the FW rate constant is maximal) and
ACCl capture corresponds on average to one open chan-
nel (i.e. the minimum meaningful ACCl rate coefficient),
ACClN = 1. The respective rate coefficients are FWχ̄max

s (θ )
(see Equation (16)) and ACClχ̄min(θ ) ≡ ACClχ̄(θ, δ)

∣∣
δ=2

(see
Equations (25) and (30)), in Figure 1 represented by the blue
and the green dashed line, respectively. The range between
the two lines will presumably be filled by the contribu-
tions from higher capture waves. We can thus anticipate
that the classical expression given by Equations (25) and
(30), for δ = 2, will provide a reasonable approximation to
the all-wave quantum capture rate coefficient for quite low
temperatures.

An example that illustrates the transition between the
FW and the ACCl regime under conditions close to that
discussed above is provided by the capture of a proton by
CH3Din the rotational state j = 2, k = 1 that occurs in the
lowest capture channel J = 2. We consider two different
values of the dipole moment of CH3D, μD = 1.6 · 10−3 D
[21] and μD = 2.19 · 10−3 D [25]. These two values of μD

correspond to two values of δ, δc = 1.11 and δc = 1.52,
respectively. Both values of δc are above the upper limit of
δ studied in Section 2, but presumably they are below the
threshold values of δ

(J,j )
th that correspond to the opening of

the next capture channels, with J = 1, 2 and 3. A rough
estimate of δ

(J,i)
th within the AC approximation can be made

by the condition

ACc(J,j )
m

(
ACδ

(J,j )
th

) = −1/4. (32)

In this equation, j = 2 and J = 1, 2 and 3, while
m is chosen from the condition that ACδ

(J,j )
th found from

this equation is minimal with respect to m. Of course,
the triad J = j = 2,m = −2 is excluded from possible
sets of J, j,m since it corresponds to the threshold for
opening of the first capture channel where the AC ap-
proximation certainly is not applicable. In this way, one
finds ACδ

(1,2)
th = 7.66, ACδ

(2,2)
th = 12.5 and ACδ

(3,2)
th = 6.28.

Since these threshold values are noticeably higher than the
values of δc given above, we expect that the rate coef-
ficients for the capture CH3D(j = 2, k = 1) + H+ in the
FW channel J = j = 2, m = −2 is given by its unitary
limit, FWχ̄max

s (θ ), for both values of δc, i.e., for those θ

where the partial s-wave contribution to the total rate coef-
ficient exceeds the contribution from higher waves (i.e. at
ultra-low temperatures). Taking the upper limit of θ as 0.1,
we find from Equation (24) that with α(CH4) = 17.3a.u.

and μ(CH3D + H+) = 1.7 · 103a.u., this value of θ corre-
sponds to T = 6.2 · 10−4K.

For smaller δ, a relation between the FW and the ACCl
limit becomes uncertain since the AC approximation, for
δ < 1, cannot reproduce the effects (though small) of the
charge–dipole interaction in the capture rate coefficient. If
these effects are disregarded (i.e. if the limit δ → 0 is con-
sidered), a simple relation between the s-wave and classical
capture rates can be given; see Dashevskaya et al. [24].

6. Conclusion

In its application to the dynamics of collisions between ions
and dipolar symmetric top molecules, the present work has
considered capture for the s-wave quantum and classical
limits under the condition that the adiabatic approximation
with respect to rotational transitions is applicable. In terms
of temperature, these two limits correspond to the ultra-
low and moderate temperature ranges defined in Nikitin
and Troe [9]. The results obtained contribute to a better
understanding of collisional aspects of the cold molecule
physics and chemistry [27].

We have studied the properties of rate coefficients across
a wide range of temperatures characterised by the dimen-
sionless parameter θ , which is related to the conventional
temperature T by Equation (15). Judging from our earlier
work [20], we tentatively take the value θ = θth = 0.1 as a
‘threshold’ for the characterisation of the transition between
the classical (θ > θth) and the quantum (θ < θth)collision
regime. Besides θ , the nature of the quantum effects de-
pends on the value of parameter δ from Equation (3). If δ

is not too small, the capture rate is controlled by the con-
tribution from several partial waves, with the maximum
value of the quantum number of total angular momentum
J = Jc ≈ √

δ. Here, the quantum effects are mainly re-
lated to the abrupt opening of the capture channels for pure
charge–dipole interaction; these effects can be described by
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a modification of the AC approach. If, on the other hand,
δ is small (δ < 1), the capture is determined by the lowest
capture channel only. Here, the quantum effects are due
to the interplay of charge–dipole and Coriolis interactions;
these effects can be accounted for by the FW approxima-
tion. For the CH3D(j, k) + H+ system discussed in Section
5 and for different j, k states of CH3D, the value of δ falls
into the intermediate range.

Passing from our reference CH3D + H+ system to other
cases, one, for example, can replace the proton by a heav-
ier ion or replace the H atoms in the molecule by heavier
atoms. In the former case, the replacement (say H+ → F+)
will decrease the quantum threshold Tth and increase δ,
thus moving the system more towards classical conditions
and minimising possible quantum effects. In the latter case,
the replacement (say H → F) leaves the quantum thresh-
old Tth unchanged, but strongly decreases δ because of a
weak effect of isotopic substitution that produces a non-
vanishing dipole moment. This case certainly falls into the
FW regime discussed in this work. However, the ques-
tion remains whether even at temperatures as low as μK
can one still discern the small charge–dipole increment to
the capture rate coefficient on a background of its Vogt–
Wannier limit. We finally note that our approach does not
allow to exactly trace the passage from the FW (ultra-low
temperatures) to the ACCl (moderate temperature) regime,
since this would require the consideration of contributions
of several partial waves (not only one as in the FW case
or many as in the AC case) and full interplay between
the electrostatic and the Coriolis interactions. The numeri-
cal calculation of capture rate coefficients that bridges the
gap between the FW and the AC limit and which is based
on a full axially nonadiabatic channnel numerical treat-
ment (with higher-wave contributions taken into account) is
presented elsewhere [28].
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Appendix. Symmetric top rotors with small
dipole moments
A spherical top ABn in its ground vibrational state has a vanish-
ing dipole moment due to the mutual compensation of the dipole
moments of the AB bonds. With isotopic substitution, B→B’,
the spherical top ABn becomes a symmetric top with a non-zero
dipole moment. The main contribution to the dipole moment in-
crement comes from the change in the zero-point average of the
AB distance upon substitution B→B’:

�μD(AB/AB′) ≈ ∂μD(AB)

∂rAB

∣∣∣∣
rAB=rAB,e

× 〈�r〉00 .

〈�r〉00 = 〈rAB〉00 − 〈rAB′ 〉00

(A.1)

For a rough estimation, we consider Morse potentials for the
individual AB bonds as

U (rAB) = D[1 − exp (−β(rAB − rAB,e)]
2 − D. (A.2)
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Writing 〈rAB〉00 = rAB,e + 〈�rAB〉00 and 〈rAB′ 〉00 = rAB′,e +
〈�rAB′ 〉00, we obtain

〈�rAB〉00 = 5

8

�ωAB,e

Dβ
, (A.3)

with �ωAB,e being the small-amplitude vibrational frequency of
the isolated AB bond.

Substituting 〈�rAB〉00 and 〈�rAB′ 〉00 into Equation (4), and
roughly approximating (∂μD/∂rAB)rAB=rAB,e by μD/rAB,e, we get

�μD

μD

≈ 5

4

�ωAB,e

2DβrAB,e

(
1 −

√
MAB/M ′

AB′

)
, (A.4)

where MAB and MAB′ are the reduced masses of the bonds
AB and AB’. Introducing the anharmonicity constant xAB,e =
�ωAB,e/4D and the zero-point harmonic vibrational amplitude
�rAB0 = √

�/MABωABe, we rewrite Equation (A.1) in the form

�μD

μD

= �rAB0

rAB,e

5

4

√
2xAB,e

(
1 −

√
MAB/M ′

AB ′

)
, (A.5)

which indicates the reason for the small magnitude of the ra-
tio �μD/μD , being the small zero-point harmonic vibrational

amplitude in comparison with the equilibrium distance of the AB
bond and the small value of the anharmonicity constant for the AB
oscillator. The last factor on the right-hand side of Equation (A.4)
also can be small, provided that the ratio MAB/M ′

AB′ is close to
unity, since 1 − √

MAB/MAB′ ∝ �MAB/AB′/MAB, with �MAB/AB′
being the change in the reduced mass of the AB fragment upon
isotopic substitution.

Considering CH3D as an example, we employ parameters of
CH from Radzig and Smirnov [26] for the characterisation of the
individual CH bonds. This yields an estimate of the increment,
upon substitution H→D, of the dipole of CD as �μD(CH/CD) ≈
8 · 10−3D, which can be compared with μD(CH3D) = 5.6 · 10−3D
from high-resolution interferometric Fourier transform experi-
ments [25] and μD(CH3D) = 6.8 · 10−3D from quantum Monte
Carlo calculations [25].

For capture of CH3D by H+ , δ is bracketed between 1 and
2 (see Section 5). This is an intermediate value, since δ can be
much larger if the proton is replaced by a heavier ion, or much
lower if the CH/CD moiety is replaced by a AB/AB′ moiety
with smaller change in the reduced mass upon isotopic sub-
stitution. Thus, the interesting range of δ corresponds to wide
variations in δ, from values much lower to much higher than
unity.
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