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Kaspars Blushs and Marcis Auzinsh
Department of Physics, University of Latvia, 19 Rainis Blvd., Riga LV-1586, Latvia
(Received 27 December 2003; published 9 June 2004

In this paper we obtain the rate equations for Zeeman coherences in the broad-line approximation and
steady-state balance equations directly from optical Bloch equations without the use of the perturbation theory.
The broad-line approximation allows us to use the adiabatic elimination procedure in order to eliminate the
optical coherences from the optical Bloch equations, but the steady-state condition allows us to derive the
balance equations in a straightforward way. We compare our approach with the perturbation-theory approach as
given previously and show that our approach is more flexible for analyzing various experiments. Meanwhile
we also show the validity and limitations of the application of the rate equations in experiments with coherent
atomic excitation when either the broad-line approximation or steady-state conditions hold. Thus we have
shown the basis for modeling the coherent atomic excitation experiments by using the relatively simple rate
equations, provided that certain experimental conditions hold.
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[. INTRODUCTION from a spectral lamp and did not include the light-induced-
transition effects into the analysis. They assurireditively
Coherent effects in the interaction of laser radiation withthat one can neglect the optical coherences in the case of
atoms and molecules play a major role in physics and chemsych an excitation. No mathematical arguments were pro-
istry. Applications such as electromagnetically induced transyided, and the only justification of the used model was the
parency{1], laser cooling2—-4], lasing without inversioi5],  good agreement between the theory and experiment. The
coherent population transfgg], various nonlinear magneto- |ack of rigorous mathematical argument was overcome later
optical effectq7], new methods for magnetomet,9], co- by Cohen-Tannoudji—with a slightly different approach,
herent control of chemical reactio$0], and many others through the use of the perturbation theory and assuming the
are widely used as powerful research tools. Theoretical angLA [12].
experimental investigations of the coherent effects become The BLA means that the spectral linewidth of the laser
increasingly important as they open the way for more practight used in excitation of atomic transitiakw is very large
tical applications. Apart from some relatively simple casescompared to the natural linewidih of the atomic transition,
where direct solution of the time-dependent Schrodinger
equation can be usef®], usually when one speaks about Aw>T, (1)
modeling of experiments with atomic coherent excitation,
they mean the so-called “optical Bloch equatio®®BE) or  and the spacing between laser modesis small compared
Liouville equations[11-13 for the quantum density matrix o T,
p. These involve botloptical and Zeemancoherences cre-
ated in an ensemble of atoms. Zeeman coherences are quite Sw<T. 2)
stable and therefore it is relatively easy to employ them
practica"y_for examp|e, Zeeman coherences are a basic in- In this case different “Bennett holes,” burnt by the various
gredient of sub-Doppler and subrecoil laser cooling mechamodes in the Doppler profile, overlap, and the structure
nisms[2—4]. Optical coherences, on the other hand, are verngaused by different holes in the atomic response disappears.
sensitive to a variety of factors—collisions, finite laser line-If, in addition, the modes cover all the velocity distribution,
width, laser light fluctuations—both in phase and in ampli-the atomic response does not depend on the velocity of the
tude, and many others. This means that, in describing a widéanslational motion of the atom, and the quantum density
variety of atomic excitation experiments, one can neglect th&atrix p refers to internal variables only. In order to use the
optical coherences. This leads to the well-knowte equa-  Perturbation theory, the following condition must be satis-
tions for Zeeman coherencgb2,14. By saying “rate equa- fied:
tions” we mean that these equations do not couple Zeeman
coherences to optical coherences. Aw>T,T, (3)
Among the first to obtain the rate equations for Zeeman
coherences by neglecting the optical coherences weneherel’, is related to the timé,=1/I'; characterizing the
Cohen-Tannoudji and Barrat in 19614]. They used pertur- evolution of the density matriyp under the effect of the
bation theory to obtain the rate equations in the so-calle@¢oupling with the light beam. The rate equations for Zeeman
“broad-line approximation”(BLA) [15]. These rate equa- coherences, obtained by considering the conditidns(3),
tions were obtained by considering the excitation with lightare often called the BLA equations.
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In the past, rate equations for Zeeman coherences in BLA Il. BROADBAND RADIATION INTERACTION
were very successfully used to analyze numerous nonlinear WITH ATOMS
magneto-optical effects. These include, for example, the in-
teraction of molecules with multimode laser radiation— _ )
nonlinear Hanle effect, quantum beats, beat resonance, !N Our analysis of the usage of rate equations of Zeeman
alignment-to-orientation conversion in a magnetic field, etc.coherences, we will describe the exciting light classically
see, for example[16,17 and references therein. This ap- be a fluctuating electric fiel&(t) polarized along the unit
proach seems to be substantially less demanding technicalKgCtore,
than the OBE from the viewpoint of implementation in the E(t) = s(he+ & (e (4)
form of computer routines. '

On the other hand, these rate equations for Zeeman coher- _ i (t)i k)t
ences are not often used to describe the laser-radiation inter- e(t) = s5le C (5)
action with atomic gas. At first this seems obvious, as for ane account for the shifo-k-v in the laser frequency due
typical laser and qtomic linewidth the BLA conditions seem; the Doppler effectv is the velocity of translation motion
to be a very special case. _ , of atoms and is the wave vector of the exciting light: is

However, recently we have applied these equations for & center frequency of the spectrufey| is an amplitude of
description of some linear and nonlinear magneto-optical ef;qq, light field, and®d(t) is the fluctuating phase, which

fects in stati(_)nary interacti_on_ of alkali-metal atoms with agives the spectrum of the radiation a finite bandwidb. If

broadband dlqde—laser radiatiph8—21. In these cases, the ¢ phase fluctuations are completely random, then the line
BLA clet_:\rly d'q not hold. Ne_vertheless, the agreement pe— hape of the exciting light is Lorentzian. In the case of a
tween simulation and experiment was good. The detaile ser, this corresponds to a single-mode laser with a ran-

analysis showed that for the use of BLA equations, one doeaomly fluctuating phase. In the case of a spectral lamp, this

not ?"Ways have to cons_lder the BLA cond|t|_ons—a r";‘thercorresponds to a lamp where the dominant mechanism for
striking result at first sight. For example, in case of a

- ., o A the linewidth broadening is collisions between the radiating
steady-state” excitation there actually are no limitations for

; atoms or molecules. Note that for a single-mode laser, the
the use of the BLA equations except for the steady state| A condition (2) is not fulfilled

itself. The steady state or stationary excitation means that the

excitation light does not depend on time, which implies the

same for the total density matrp{t)—and this is the case in dleg]

many coherent atomic excitation experiments. Or= PR (6)
What was the reason for such a good agreement between

simulation and experiment in the above experiments withwhered is assumed to be the strongest atomic electric-dipole

alkali-metal atoms? After a detailed analysis, it turned outnoment for the transitiogtransitiong under consideration.

that the key factor was the fact that the spectral linewidth of

the radiation from the diode lasers was mainly determined by B. Optical Bloch equations

phase fluctuations. The problem was that rigorous analysis of \ya consider the dipole interaction of an atom with a laser

the limitations of the rate equations for Zeeman coherenceﬁem in the presence of an external static magnetic fild
in the case of noisy laser radiation seemed still to be lacking, e assume that the atomic center of mass moves classically,
On the other hand, there has been a large amount of WORghich means that the only effect of the dipole interaction of
(see _the overview if22,23) _dgalln_g W't_h the OBE whenthe o atom with a laser field is an excitation of a classically
exciting radiation has a finite linewidth arising from the ,qing atom at the internal transitions. In this case, the in-
fluctuat|o.ns—.both in phase and in amplitude. . ternal atomic dynamics is described by the semiclassical
Thus in this paper we use the rgsult; obtained f_or the;tomic density matrixp, which parametrically depends on
OBE, and, to our knowledge for the first time we obtain they,o cjassical coordinates of the atomic center of mass. We
rate_equations for Zeeman coherence; directly from _th%onsider atoms with a definite velocity illuminated by the
OBE. We also compare our approach with the perturbation,, iing jight (4) and(5), resonant with they« e transition,
theory approact{12] and show the advantage of our ap-, the presence of an external static magnetic flavhich

proach. We analyze the limitations of usage of the rate edUdsmoves the degeneracy of the levglsnde, so that now we
tions for Zeeman coherences in conditions of noisy lase[:onsider Zeeman sublevajsande. In writir,lg OBE. see. for
radiation—with an emphasis on the analysis for nonlinearexamp|e[22] ' T
magneto-optical effects in atoms. In the limit of large angular ’
momentum(molecular casg such an analysis, at least par- L dp e~ A

tially, was done previously ifi24]. In this paper, our goal is = [H,p]+i%Rp, ()

to fill in this gap for the atoms. The obtained results are in .

such good agreement with experiment that we feel that theve consider only the relaxatioR due to spontaneous emis-
relatively simple rate-equation approagtompared to the sion. This means that we neglect other relaxation mecha-
conventional OBE approagts far too often undeservedly nisms, such as collisions, fly-through relaxation, etc. This
neglected when discussing the modeling of nonlineamssumption means that different velocity groups do not

magneto-optical effects in atoms. interact—the density of atoms is sufficiently low. For sim-

A. Exciting light

The Rabi frequency)y is
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plicity, we also assume that the atomic transition forms a4 g, i
closed system—a cycling transition. In this spontaneous re——— = > ( e.gkpgkg s degkp%) > (%gdekgjp%ek
e

laxation case, the terms for a closed system for the density It %
matrix element%igj, Pge; Peg;r Pee, aT€ B i—s*d* Y T 12
- ce 7 & YegPasy egjPeg; ~ 5 Peg;
Rogg = > LggPee;
&€ :
d Pee i i 5 i
1 = — P - —
. r ot - < | 7e%eapge t 58 deg Py ~ 7 ey Peg,
Rpgiej == Epgiej’ Yk
ﬁs dgke pegk) iweiejpelej - 1—‘pelej- (13
Rp T
ag =~ pPegy The matrix elements of the tyjik,, =(g|d-€|g;) can be cal-
culated using the standard angular momentum algebra
c 17,25,26.
Rpee- == Fpee-v ®) [ g

Now, in order to eliminate the fast oscillations with opti-
whereFeeJ describes the spontaneous relaxation fm to  cal frequencyw, we make the following substitutions:
P andIJ describes the spontaneous relaxation fmm g.

For the closed system it is obvious that Pag; = Pag, = Pag;
> Ie=T. T (ko))
ag O Pgie; = Pgie€ ’
The Hamiltoniari:|:I:|o+V includes the unperturbed atomic =, ei(erkgyt-ia)
pqgj = Pelgj )

Hamiltonianl:lo, which depends on the internal atomic coor-
dinates Ho|¥,)=E,|¥,), and the dipole-interaction operator
v=-d -E(1), whered is the electric dipole operator. Writing Peie; = Pee; = Peg: (14)
OBE explicity for the density matrix elemepf;, we get By using the rotating-wave approximatiql] and ne-
glecting terms with double optical frequency, we arrive at

Jpi i~ i - )
—t=- 7 [Ho.pijl + 2d -E(U).p5] + Roj

at &pgl —_ - )
i =2 ( lealdyePag, |8ﬁdek9jpgiek> ~ 50,0,
—lwjjpy + Rplj + 2 ( —elipy + ﬁs dlkpkj
+ E TogPae (15)
i ([
- %Sdkjpik T8 dijik) : 9
et p *
where_wij:(_Ei—Ej)/ﬁ d(_::notes the Zeemgn splitting of the g' = —|8ﬂ2 d ge Lo~ |8ﬁ2 dgkepgigk
levelsi andj, andd,=(i|d-€|k), By choosing the quantiza- g
tion axis to be parallel to the exterr_wal stati(_: magne_tic &Id o E I Db
all of the dependence of the density matrix on Biéeld is —i(w—KgV+ wge)pge ~ “Pge ~ I~ P e
. . e . gl] gl] 2 g|] at g
included in the splitting ternay;;. Thus we arrive at the fol-
lowing equations for the density matrix eleme;cvgsjJ Pge; (16)
Peg;: andpe,e
; IPeg i i
| _rey - — d - d
E( .ekpekg + ﬁs “d. geleg; ﬁ‘~3dekgjpglek It ﬁ|£;|g2k 9 L9g ﬁ|£;|%:’ o0 e
; ee +i(w—KyV — Weq)Peg — =P +i&p
s "o Pge, ) ~i0ggPgg * > TggPee: (10 oV T Weg)Peg; T 5 Peg T T Pegp
&€;
J (17)
9 Pge, _ i i
Y E %Sdgiekpeke + ﬁs dgekpeke 2 %Sdgkejpgigk Pee E — o — .
& % at 8" egkpgke |£E|dgkejpelgk - |we|ejpe|ej
. 9k
i . r
- %8 dgkejpgigk> - Iwgiejpgiej - Epgiej’ (11) - Fpeiej' (18)
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C. Atoms in a fluctuating optical field [32—34, which assumes that the phase remains constant ex-

Equations(15)—(18) are stochastic differential equations C€Pt for sudden random “jump,” when it changes to a new
[27] with stochastic variableéd(t)/ét. In an experiment, as a constant value. This model is used to describe the fluctua-
rule, we deal with quantities that are averaged over the tim ons fro”.‘ spectral Iamps.when the. dominant mechqmsm for
intervals that are large in comparison with the phase-t e linewidth pro_adenmg is determined by the collisions be-
fluctuation time in the excitation-light source, therefore wetween the radiating atoms or molecuf@®,32,33. The sec-

need to perform a statistical averaging of the above eqannd model is the “phase-diffusion” mod¢80,31,35,3%

tions. In order to do that, we solve Eq46) and(17) [with which assumes the continuous random diffusion of the
initial condition Pgiej(to):pelgj(to)zo] and then take a formal Phase. This model is used to describe the fluctuations from

statistical average over the fluctuating phases, single-mode lasers with fluctuating pha2,35,3§.

3{pgg.) i —_ - 1. “Phase jump” model
(9'[I =2 (%|8jdgiek<pekgi>_%|8E{dekgj<pgiek>> Our analysis of phase jumps in excitation radiation is
™ based on the detailed analysis of the model in the case of
— i“’gigj<pgi9j> + nggjj<f’qej>' (19) optical Bloch equations performed [82-34. The random
1%

jump process is Poissonian in nature—the probability for the
phase to changhl times during timet-t’ is

— i I ) PN
<Pgie-> = _|8d2 dg- J drilokgvrage)~(I/2)](t-t") p = i(i) o=t o4
TR NTNT ! (29
><<pekej(t')e“[q’(‘)“"("”)dt’ whereT is the average time between successive phase jumps.
) ; Now we define(et'*®) as the average phase change during
- I—|85|2 d; j gri(okgvrage)=(I12)](t-t") one jump. If during the time&-t’ there has been only one
h %), i DOy = (HAD - i dur-
% 0 phase jump, thege* )1=(e*'2®). Obviously, if dur
X<pgigk(t1)e—i[tb(t)—¢(t’)]>dt/’ (20) ing the timet-t’ there has beerlN phase jumps, then

(etilPO-0M)]y = (HAPN a5 every jump on average adds one
i . more multiplier(e*'2®). In order to get the final expression
@) = %|sjE deg, f di(wkgv-gg)=(I12)](t-t") for (e4Il®O-*t")]y \we must average over every possible num-
9K to ber N=0— of phase jumps during time-t’,
><(pgkg_(t’)ei[q)(t)"b(t,)])dt' o
! <eti[<IJ(t)—<I>(t’)]> = 2 pN<eti[‘I’(t)-‘I’(t’)]>N

H t
| (@K —V=an - )= _t! =
_ £|8j2 deng dilokgv-vgq)~(I12](t-t') N=0
€ tO *° 1 t _ t/ N
. o — —(t—t’)/TE l <etiA<D>
X(peg (t)eMT It (21) Nl T
3ous) = dtma~ea ). (25)
Pee; i o — i . —
gt > <%|8ﬂdeigk<”gkej> - g|8ﬂdgkej<Pelgk>> At this point we make further simplifications. We consider
% the case, when there is no correlation of the phase values
- iwqu_(p(alej) - F(pelej>. (22 before and after the jumf82]. ThenT is also the correlation

] . time of the phasdon average after the tim& the phase
Now we employ the relation3), which allows us to use “forgets” its pasf T=2/Aw. We also assume that all phase
the decorrelation approximatioi28—3(. The decorrelation yajyes occur with equal probability. Théet'2®)=0, and Eq.
approximation means that we neglect the fluctuations 0{25) becomes

p%aj(t)(a:e,g) around their mean valu(’:paia.(t», and thus
separate the atomic and field variables in £86) and(21), (efilPO-0)]y = g(Awi2)t-t") (26)

N etil®H)-ot)] = N eti[PO-0(t")] This means that the spectral distribution of the exciting light
{Paa(t)e = (pag(tINE h @3 is Lorentzian with a FWHMA w.

wherea=e,g. The decorrelation approximation in general is
valid only for Wiener-Levy-typgsee below phase fluctua- 2. "Phase-diffusion” model
tions [30,31. In the case of a general stochastic field, the = oyr analysis of the influence of phase diffusion of the
decorrelation approximation can be used as a first approXigycitation radiation on the interaction of laser radiation with
mation only for weak fields below saturati¢29,3Q. ~atoms is based on the phase-diffusion model analyzed in

In ‘order to evaluate the correlation function 2931 35 3§ In the phase-diffusion model, the field has a
(etl®O-®M)]) 'we assume two simple models, which lead toconstant amplitude, but its phase is a fluctuating quantity
similar results. The first one is the “phase jump” modelwhich obeys the Langevin equation
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s =s(1), 27)
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The Lorentz profile is not a good description of the wings
of any laser spectrum, thus this model is appropriate for
rather small detunings. However, as shown[35,36, for

where s(t) is a Gaussian random force with a correlation 8>b (or 8> Aw) in the limit 3>T',Qg, the line shape of

function

(s(Ds(t) =bpe ], (28)

(s(t) =0, (29

which means that(t) obeys the Langevin equation for
Brownian motion[22,27,

d
d—ts(t) + Bs(t) =F(1), (30
whereF(t) is a 5-correlated Gaussian force fulfilling the con-
dition
(FIOF(t)) = 2bB28(t - t'). (31

The meaning of the parametdrsind 8 can be understood
from EqQs.(27)—«31). The quantity 13 is the correlation time
of the phase time derivativg(t), but b gives the bandwidth
of the field in the limit3— . Explicit expressions fog and

the exciting light is Lorentzian with a cutoff at frequencjes

In this case, the damping terfxw/2 is simply multiplied by

the cutoff term, dependent on the detunj8§,39. This cor-
responds to a more realistic model of the laser spectrum. We
also have to remember that for the rotating-wave approxima-
tion, wy> B, as B is the correlation time of the phase time
derivatives(t)=dd(t)/dt.

D. The effective relaxation caused by the fluctuations
of the exciting light

As can be seefEqgs.(26) and(34)], both approaches give
similar results for the time-averaged phase fluctuation
value—the effect of the phase fluctuations on the density
matrix is simply to add the additional relaxation term, equal
to the HWHM of the exciting light. Now we use Eq&6)
and(34) to rewrite Eqs(19)—22) (for simplicity in the sub-
sequent expressions, we further drop the averaging brackets

| -
b in terms of fundamental laser constants are discussed by It =2 (Z'sddgiekpekgj - %|8jdekgjp giek>

Haken in[37]; see alsd38].

The spectrum of the exciting radiation described by Egs.
(27)<(31) is given by the Fourier transform of the correlation

function,

(etllP0-0M)]y = exp[ b(t—t’|+%(e‘5“"|—1))}.

(32)

For B>b, the spectrum is Lorentzian with a FWHM
Aw=2b and a cutoff at frequencig’, but for 3<b the spec-
trum is Gaussian with a FWHM8In(2)bg.

In the limit 8— o, the spectrum is pure Lorentzian with a

FWHM Aw=2b ands(t) becomess-correlated,
(s(t)s(t')y=2bs(t-t"), (33

but the phaseb(t) determined by a Wiener-Levy stochastic
process. As mentioned above, the Wiener-Levy process is the
only one for which the decorrelation approximation is math-

ematically rigoroug29-31. It is easily understood as in this
process the relevant fluctuating quantty) is 5-correlated

I""ggjpgg] EF pe,e’ (35)
&€

1~

—~—

o= ﬁzdgekf exd—i(w—kgV+ wge)
= (112 + Aw/2)](t = t)pge (')d

i . .
- £|8jg2k dgkejfto exd-i(w—kg v+ “’Qiej)

= (T2 + Aw/2)](t — t')pg g (')A, (36)

—~ t -
Peg, = %|Sd2 de.ng exfli(w —kg v = wgg)
Ik fo

—([/2 +Awl2)](t - t’)pgkgj(t’)dt’

——|s-|2dekgfexp[|(w kg V= wgg)

to

[the correlation time 18 of s(t) tends to zero wheg— =], — (T/2 +Aw/2)|(t—t)pee (t))dl', (37)
and thus we can always separate the time scales of evolution T
Of (paa (t')) and(e* HI2O-0(t)]) in Eq. (23). The Wiener-Levy
stochastic process is a nonstationary Markov-Gaussian pro- pee => ( le-] e;;; |s;|d* e’;;g')
cess[27], and is described by the Langevin equation for It g KK G5k
Brownian motion with negligible acceleratig@22,27,30,31, . _

iweePee ~ I 'Pee - (38)

which can be shown to be equivalent to the diffusion equa- 1G4S i

tion [22]. For the Wiener-Levy process, the relati(@2) be-
comes

<e_|[tb @(t’)]> - EX[[— b|t _ tr|] - e—(Aw/Z)(t—t’), (34)

where we have used the fact thatt’.

Ill. RATE EQUATIONS

For the sake of simplicity, we further assurtith wg
characterizing the Zeeman splitting
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Aw> wg, (390  wheredi™i=(e,[d;-€|g;) andd; denotes the electric dipole

_ - _ moment unity vectod,;=d/|d|), and thus matrix elements
though this condition can be avoided at the expense of CO"Heg are written as
i9j

plicating the final rate equations. Equati@39) means that

we can write de.gj = d%(e|d]g), (46)
(E +&) +i(w=kg v+ wge) where (e|d|g) is the reduced dipole matrix element. Note
2 2 : that for the steady-state situation we must consider the con-
I' Aw\ dition (60) in the above equations. The quantitigsandAE
~ (E + 7) +i(w =k V=wp), (40 are defined as "
<r . Aw)
I' Aw 2 5 Ty
(345 i@y o) Lo P el 2= ,
2 I Aw\?> _ )
—+— | +(w—kg-V—awg)
N Aw\ . _— 2 2
~ §+7 +i(w=-kg V—wg), (47

(47)
At this point we go further and assume certain conditions

which allow us to simplify significantly the expressions for lef? w=KoV—wy

optical coherence&36) and(37). These conditions are either AE;= 7 X [(elld]|g)|? x T 5 .

BLA (1)—«3) or the steady-stat§(60)—see below condi- (_ + _“’) +(w - K=V — wp)?

tions. Under these circumstances, the expressions for optical 2 2 ¢

coherence$36) and(37) become (48)
[ les] The quantityI', is the probability per unit time of an
Pgiej:% I Ao absorption of stimulated emission process, aki, de-
(— + —) +i(w—kgyv— wp) scribes the light shift§14] produced by the light irradiation
2 2 (dynamic Stark shijt For BLA conditions(1)—«3), Egs.(47)
* * and (48) become
X <2 dgiekpekej B 2 deejpgigk) ' (42) “9
€k Ok Aw
5 2@
1 e Lp_ e >< 2
Peg — 2 2 0\2 )
9" 4 (T Aw — | +(w-kg V- wp)?
2 + ) i(w=kgv— ) 2 @
(49
X <gz delgkpgkgj - % de‘kgjpe,ek) . (43
‘ |842 . — K=V = wg
Now, by substituting Eqs(42) and (43) in Egs. (35) and X [el[dllg)f* < Ao -
(38), we arrive at the final rate equations, <?> +(0-Kg V= wp)?
% =T, 2 (d9%)" demgjpeke -> [(EEHAEp) (50
It R R Note also that the phase fluctuatio(@escribed by the
I above models reduce the saturation on resonante
X (i) d%gmpgmgj— (—ZE—iAEp)(d%maK) —kgv—wy=0) by a factorI'/(I'+Aw), and increase the
saturation faroff resonande—k-v—wy>1",Aw) by a fac-
. . . tor '+Aw)/T.
€9 — €€
X dy Jpgigm] 19g,9,Pgg, +z ngd,-pe.ej’ (44) When the density matrix for the excited state is calcu-
H lated, one can obtain the fluorescence intensity with specific
polarization along the unit vectey as[14,17,39
Pee
B F 2 degk(dgmel) p - E [( |AE) N
It e e R P I(ey) =To E (dye) ey Pee (51)

9,61,
* F
X di9( dFkem - (—9 +iAE ) ~ o - .
1 ( 1 ) Pene; 2 P wherel0 is a proportionality coefficient and the matrix ele-
mentd Ob) =(g;|d -e;|e;) contains the polarization vectey of
;|0 -€4[€ p i1

X dimo(dP) " pe ] iweepee ~TPae, (45 the I|ght \which is detected.
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IV. ANALYSIS AND CONCLUSIONS * —i(d,~D
(e (t=1)= 2 [e,lle, [ )
A. Perturbation theory approach mu!
The obtained rate equations for Zeeman coherences coin- X g @pko, g o, ke, V()
cide with equations obtained earlier in the perturbation = |e, [2e i @uke V)7 (59)
theory approach ifil2]. In that approach the ratios between p s '

rate constants involved in the probleiliy,I’) and the line-

width of the excitation radiatiodw are used as small pa-  Applying perturbation theory, after some calculations with

rameters. Here we stress that, although the obtained equthe consideration of Eq58) and the “coarse-grained” de-

tions coincide, the approach used in this study is differentivative, the rate equations are obtaind@®], again consid-

and allows us to examine in more detail the limits of usageering the condition(39) for simplicity. The obtained rate

of rate equations for Zeeman coherences to analyze specif@gjuations are exactly the same as the above derived equa-

experiments. To compare the two approaches, let us havet®ns (44) and (45), but with I'; and AE,, having a slightly

brief look at the method used and conclusions obtained wittdlifferent form as defined in Eqs§47)«50). This mismatch is

perturbation theory. easily avoided if instead of the exciting-light model
Let T,=1/T", be the time characterizing the evolution of (55)—(58) we take the mode#), (5), (26), and(34). Then the

the density matrix under the effect of coupling with the light rate equations are the same as Hdd) and (45), with Iy

field. In the following analysis, it is assumed that the inten-and AE, defined as in Eqg49) and(50).

sity is sufficiently low so thafl, is much longer than the Thus the perturbation theory approach is summarized as

correlation timeT=1/Aw of the light wave, follows: we definea priori the BLA conditions(1)—«3) and
then use the perturbation theory to obtain the rate
Aw>T,. (52)  equations—and thus we are restricted to the BLA case.

However, in our approach we obtain the “phase-averaged”
OBE and then it is possible to choose between the BLA
Tp 7> A>T, (53) (1)—<(3) or steady-stat€60) possibilities.

Thus we arrive at the conclusion stated above that the
where 7=1/T". SinceT,, 7> At, one can conclude that(t  approach discussed in this paper allows us to examine the
+At)—-p(t) is very small and can be calculated by perturba-limits of usage of the rate equations for Zeeman coherences
tion theory. By using perturbation theory, it is shown[ir?]  to a greater detail than the perturbation theory approach.
that the average variation @f (p(t+At)—p(t)) [the average Therefore, it can be applied to analyze a larger number or
is taken over all possible values of the random functionexperimental situations.
e(t)—see beloy is linear inAt and only depends op(t),

(p(t+ At) - p(t)) ~ Ap(t) 54 B. Velocity dependence
At TOAt (54) When we look at Eqs(47)—(50), we see that’, (the in-
. , . duced transition rajeand AE, (the dynamic Stark shiftare

Thls_ means that we can replade(t)/ At with the time velocity-dependent, and thus also are EG®) and (45).
derivativedp(t)/dt, provided that we never usiip(t)/dt to  This means that in describing the observable signal, we need
describe the changes gf(t) over time intervals that are tg take into account all velocity groups involvgdote that
shorter than correlation timEe of the |Ight wave which drives we have a|ready assumed that different Ve|0city groups do
the atoms. The quantithp(t)/At=dp(t)/dt is called the not interact—the density of atoms is sufficiently lpvin a
“coarse-grained” derivative40]. standard method, one has to determine the signal dependence

In [12], the exciting light is taken to be the superposition on velocity and then surtintegrate over the velocitiegof
of parallel plane waves having the same polarizagpbut  course, assuming that velocity distribution is kngwiHow-

Now consider a time intervalt such that

different amplitudese |, frequenciesv,,, and phase®,,, ever, usually the signal dependence on velocity cannot be
. found in analytical form, as can be seen from Edg)—50).
E() =e(te+s (e, (55) Thus a large amount of calculations is necessary to deter-
mine this dependence—and still it is just an approximation.
() = X [g, e Puilukou vt (56) The situation is simplified only for a specific kind of ex-
“ periments. For example, if we consider a case where the

exciting linewidthAw is much larger than the Doppler width
BLA relations (1)«3) hold and the relative phases of therée 9 w g Pp

, wp of the atomic ling(as it was originally assumed in the
different modes are a_ssumed_to be completely random a rturbation-theory approach as given[ir2]),
thus obey the correlation relation,
) Aw> Awp, (59)
<e—|((DM—<IJ,L')> - 6MM" (57) . .
then, as mentioned above, the atomic response does not de-
The instantaneous electric fieddt) of the light wave may pend on the velocity of translation motion of the atom and
thus be considered as a stationary random function, whicthe quantum density matriy refers to internal variables
obeys the correlation relation, only. In such a case, we obtain the rate equations by simply
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putting k,v=0 in Egs.(44) and (45), which is the same as implies the same for the total density matyit). When an
considering the atomic velocity grolv=0 only. Only one  atom is suddenly placed in an optical field, the steady-state
velocity group is also involved in experiments with cold condition is reached only after some time, after which it
atomic gases, atomic beams, etc. remains in this constant state forevenless, of course, the
Nevertheless, we have successfully used the rate equaenditions imposed on the system are chapgéhis means
tions for Zeeman coherencé#4) and(45) in modeling vari-  that, mathematically, we can obtain the steady-state solution
ous experiment§18-21. In these experiments, Eq59) if we considerp(t=~). It is also obvious that for the steady
clearly did not hold, nevertheless in describing experimentastate, the time derivative of the density matrix is zero and
signal from all velocity groups, we have used the calculatedhus mathematically we can also obtain the steady state by
signal from just one velocity grouk,v =0 [note that at reso- simply puttingdp(t)/dt=0 for both optical and Zeeman co-
nanceAEy(k,-v=0)=0]. It is clear, that in this case for the herences.
experimental and simulation results to coincide, we cannot Thus under the steady-state conditions, we can express
use the exact expressionid7) and (49) for I'y(k;-v=0).  the optical coherences in terms of Zeeman coherences from
Thus we must consider the “effective” induced transition ratethe OBE directly, without any assumptions. In doing so, we
Fgﬁ, which in general does not coincide with(kg-v=0). obtain the rate equations for Zeeman coheremgig,:{t) and
Using the signal from the velocity grougv=0 as the p..(t), which now form a set of linear equations, because of
calculated signal is justified if we know the relation betweenthe steady-state condition,
Ip(kg-v=0) and Fgﬁ in advance. In reality, this relation is

known only in some specific cases—for example, for the dPgig-(t) _
“steady-state” excitation with laser intensities below da

saturation—so we know thdtgﬁ~l“p(kg-v:0), as the sig-
nal from the velocity grougk,v=0 is proportional to the

signal from all velocity groups—sdd 7]. However, in most M =0. (60)
cases establishing the relation betwdgfk-v=0) andI's" dt

is rather complicated as it involves a large amount of calcuas mentioned above, under the steady-state conditions, in
lations. principle, there are no limitations in the use of the rate equa-

Therefore, in the analysis of experiments we have use¢ons, except for the steady-state conditi@d) itself.
the following approach—the signal from the velocity group

k,v=0 is calculated and then the best fit to an experiment is
found—thus experimentally finding the relation between o .
I'y(kg-v=0) andTe". In order to predict further results, we ~_IN the case of large Zeeman splittings, that is, when Eq.
use the extrapolation and various other mathematical tecH39 does not hold, the final rate equations become more
niques. This method has proven to be successful in man?ompllcated. However, the derivation procedure_, of course,
cases. is still the same: we assume the already mentioned condi-
tions, then simplify optical coherenc%ie_ and Peg; from
C. Steady-state excitation Eqgs.(36) and(37), and substitute them in qu(§5) and(38).
Thus we arrive at the final rate equations, which now become

_ As was shown above generally, the use of the rate equanre complicated than Eqgl4) and(45). The definitions of
tions for Zeeman coherences to describe the time-dependeft ;.4 AE  also become different from those in Egs
5 .

behavior of atoms in laser and magnetic fields requires ceri’7)_(50)_ All of the above analysis still holds.
tain conditions regarding absorption rate related to the ligh
intensity and spectral width of the laser line. At the same
time, very often in coherent atomic-excitation experiments
the “steady state” or stationary excitation conditions are The authors are grateful to Dr. Bruce Shore and Dr. An-
reached—the excitation light does not depend on time, whiclirejs Reinfelds for stimulating and enlightening discussions.

D. The case of large Zeeman splitting
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