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In this paper we obtain the rate equations for Zeeman coherences in the broad-line approximation and
steady-state balance equations directly from optical Bloch equations without the use of the perturbation theory.
The broad-line approximation allows us to use the adiabatic elimination procedure in order to eliminate the
optical coherences from the optical Bloch equations, but the steady-state condition allows us to derive the
balance equations in a straightforward way. We compare our approach with the perturbation-theory approach as
given previously and show that our approach is more flexible for analyzing various experiments. Meanwhile
we also show the validity and limitations of the application of the rate equations in experiments with coherent
atomic excitation when either the broad-line approximation or steady-state conditions hold. Thus we have
shown the basis for modeling the coherent atomic excitation experiments by using the relatively simple rate
equations, provided that certain experimental conditions hold.

DOI: 10.1103/PhysRevA.69.063806 PACS number(s): 42.50.Gy, 32.80.Bx, 32.60.1i

I. INTRODUCTION

Coherent effects in the interaction of laser radiation with
atoms and molecules play a major role in physics and chem-
istry. Applications such as electromagnetically induced trans-
parency[1], laser cooling[2–4], lasing without inversion[5],
coherent population transfer[6], various nonlinear magneto-
optical effects[7], new methods for magnetometry[8,9], co-
herent control of chemical reactions[10], and many others
are widely used as powerful research tools. Theoretical and
experimental investigations of the coherent effects become
increasingly important as they open the way for more prac-
tical applications. Apart from some relatively simple cases,
where direct solution of the time-dependent Schrödinger
equation can be used[6], usually when one speaks about
modeling of experiments with atomic coherent excitation,
they mean the so-called “optical Bloch equations”(OBE) or
Liouville equations[11–13] for the quantum density matrix
r. These involve bothoptical and Zeemancoherences cre-
ated in an ensemble of atoms. Zeeman coherences are quite
stable and therefore it is relatively easy to employ them
practically—for example, Zeeman coherences are a basic in-
gredient of sub-Doppler and subrecoil laser cooling mecha-
nisms[2–4]. Optical coherences, on the other hand, are very
sensitive to a variety of factors—collisions, finite laser line-
width, laser light fluctuations—both in phase and in ampli-
tude, and many others. This means that, in describing a wide
variety of atomic excitation experiments, one can neglect the
optical coherences. This leads to the well-knownrate equa-
tions for Zeeman coherences[12,14]. By saying “rate equa-
tions” we mean that these equations do not couple Zeeman
coherences to optical coherences.

Among the first to obtain the rate equations for Zeeman
coherences by neglecting the optical coherences were
Cohen-Tannoudji and Barrat in 1961[14]. They used pertur-
bation theory to obtain the rate equations in the so-called
“broad-line approximation”(BLA ) [15]. These rate equa-
tions were obtained by considering the excitation with light

from a spectral lamp and did not include the light-induced-
transition effects into the analysis. They assumedintuitively
that one can neglect the optical coherences in the case of
such an excitation. No mathematical arguments were pro-
vided, and the only justification of the used model was the
good agreement between the theory and experiment. The
lack of rigorous mathematical argument was overcome later
by Cohen-Tannoudji—with a slightly different approach,
through the use of the perturbation theory and assuming the
BLA [12].

The BLA means that the spectral linewidth of the laser
light used in excitation of atomic transitionDv is very large
compared to the natural linewidthG of the atomic transition,

Dv @ G, s1d

and the spacing between laser modesdv is small compared
to G,

dv , G. s2d

In this case different “Bennett holes,” burnt by the various
modes in the Doppler profile, overlap, and the structure
caused by different holes in the atomic response disappears.
If, in addition, the modes cover all the velocity distribution,
the atomic response does not depend on the velocity of the
translational motion of the atom, and the quantum density
matrix r refers to internal variables only. In order to use the
perturbation theory, the following condition must be satis-
fied:

Dv @ G,Gp, s3d

whereGp is related to the timeTp=1/Gp characterizing the
evolution of the density matrixr under the effect of the
coupling with the light beam. The rate equations for Zeeman
coherences, obtained by considering the conditions(1)–(3),
are often called the BLA equations.
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In the past, rate equations for Zeeman coherences in BLA
were very successfully used to analyze numerous nonlinear
magneto-optical effects. These include, for example, the in-
teraction of molecules with multimode laser radiation—
nonlinear Hanle effect, quantum beats, beat resonance,
alignment-to-orientation conversion in a magnetic field, etc.;
see, for example,[16,17] and references therein. This ap-
proach seems to be substantially less demanding technically
than the OBE from the viewpoint of implementation in the
form of computer routines.

On the other hand, these rate equations for Zeeman coher-
ences are not often used to describe the laser-radiation inter-
action with atomic gas. At first this seems obvious, as for a
typical laser and atomic linewidth the BLA conditions seem
to be a very special case.

However, recently we have applied these equations for a
description of some linear and nonlinear magneto-optical ef-
fects in stationary interaction of alkali-metal atoms with a
broadband diode-laser radiation[18–21]. In these cases, the
BLA clearly did not hold. Nevertheless, the agreement be-
tween simulation and experiment was good. The detailed
analysis showed that for the use of BLA equations, one does
not always have to consider the BLA conditions—a rather
striking result at first sight. For example, in case of a
“steady-state” excitation there actually are no limitations for
the use of the BLA equations except for the steady state
itself. The steady state or stationary excitation means that the
excitation light does not depend on time, which implies the
same for the total density matrixrstd—and this is the case in
many coherent atomic excitation experiments.

What was the reason for such a good agreement between
simulation and experiment in the above experiments with
alkali-metal atoms? After a detailed analysis, it turned out
that the key factor was the fact that the spectral linewidth of
the radiation from the diode lasers was mainly determined by
phase fluctuations. The problem was that rigorous analysis of
the limitations of the rate equations for Zeeman coherences
in the case of noisy laser radiation seemed still to be lacking.
On the other hand, there has been a large amount of work
(see the overview in[22,23]) dealing with the OBE when the
exciting radiation has a finite linewidth arising from the
fluctuations—both in phase and in amplitude.

Thus in this paper we use the results obtained for the
OBE, and, to our knowledge for the first time we obtain the
rate equations for Zeeman coherences directly from the
OBE. We also compare our approach with the perturbation
theory approach[12] and show the advantage of our ap-
proach. We analyze the limitations of usage of the rate equa-
tions for Zeeman coherences in conditions of noisy laser
radiation—with an emphasis on the analysis for nonlinear
magneto-optical effects in atoms. In the limit of large angular
momentum(molecular case), such an analysis, at least par-
tially, was done previously in[24]. In this paper, our goal is
to fill in this gap for the atoms. The obtained results are in
such good agreement with experiment that we feel that the
relatively simple rate-equation approach(compared to the
conventional OBE approach) is far too often undeservedly
neglected when discussing the modeling of nonlinear
magneto-optical effects in atoms.

II. BROADBAND RADIATION INTERACTION
WITH ATOMS

A. Exciting light

In our analysis of the usage of rate equations of Zeeman
coherences, we will describe the exciting light classically
be a fluctuating electric fieldEstd polarized along the unit
vectore,

Estd = «stde+ «*stde* , s4d

«std = u«v̄ue−iFstd−isv̄−kv̄·vdt. s5d

We account for the shiftv̄−k v̄ ·v in the laser frequency due
to the Doppler effect:v is the velocity of translation motion
of atoms andk v̄ is the wave vector of the exciting light.v̄ is
the center frequency of the spectrum,u«v̄u is an amplitude of
laser light field, andFstd is the fluctuating phase, which
gives the spectrum of the radiation a finite bandwidthDv. If
the phase fluctuations are completely random, then the line
shape of the exciting light is Lorentzian. In the case of a
laser, this corresponds to a single-mode laser with a ran-
domly fluctuating phase. In the case of a spectral lamp, this
corresponds to a lamp where the dominant mechanism for
the linewidth broadening is collisions between the radiating
atoms or molecules. Note that for a single-mode laser, the
BLA condition (2) is not fulfilled.

The Rabi frequencyVR is

VR =
du«v̄u

"
, s6d

whered is assumed to be the strongest atomic electric-dipole
moment for the transition(transitions) under consideration.

B. Optical Bloch equations

We consider the dipole interaction of an atom with a laser
field in the presence of an external static magnetic fieldB.
We assume that the atomic center of mass moves classically,
which means that the only effect of the dipole interaction of
the atom with a laser field is an excitation of a classically
moving atom at the internal transitions. In this case, the in-
ternal atomic dynamics is described by the semiclassical
atomic density matrixr, which parametrically depends on
the classical coordinates of the atomic center of mass. We
consider atoms with a definite velocityv, illuminated by the
exciting light (4) and (5), resonant with theg↔e transition,
in the presence of an external static magnetic fieldB, which
removes the degeneracy of the levelsg ande, so that now we
consider Zeeman sublevelsgi andei. In writing OBE, see, for
example[22],

i"
] r

] t
= fH̃,r̃g + i"R̂r, s7d

we consider only the relaxationR̂ due to spontaneous emis-
sion. This means that we neglect other relaxation mecha-
nisms, such as collisions, fly-through relaxation, etc. This
assumption means that different velocity groups do not
interact—the density of atoms is sufficiently low. For sim-
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plicity, we also assume that the atomic transition forms a
closed system—a cycling transition. In this spontaneous re-
laxation case, the terms for a closed system for the density
matrix elementsrgigj

, rgiej
, reigj

, reiej
are

R̂rgigj
= o

eiej

Ggigj

eiej reiej
,

R̂rgiej
= −

G

2
rgiej

,

R̂reigj
= −

G

2
reigj

,

R̂reiej
= − Greiej

, s8d

whereGgigj

eiej describes the spontaneous relaxation fromreiej
to

rgigj
andG describes the spontaneous relaxation frome to g.

For the closed system it is obvious that

o
gigj

Ggigj

eiej = G.

The HamiltonianĤ=Ĥ0+V̂ includes the unperturbed atomic

HamiltonianĤ0, which depends on the internal atomic coor-

dinates,Ĥ0uCnl=EnuCnl, and the dipole-interaction operator

V̂=−d̂ ·Estd, whered̂ is the electric dipole operator. Writing
OBE explicity for the density matrix elementri j , we get

] ri j

] t
= −

i

"
fĤ0,ri jg +

i

"
fd̂ ·Estd,ri jg + R̂ri j

= − ivi jri j + R̂ri j + o
k
S i

"
«dikrkj +

i

"
«*dik

* rkj

−
i

"
«dkjrik −

i

"
«*dkj

* rikD , s9d

where vi j =sEi −Ejd /" denotes the Zeeman splitting of the
levels i and j , anddik;ki ud ·eukl, By choosing the quantiza-
tion axis to be parallel to the external static magnetic fieldB,
all of the dependence of the density matrix on theB field is
included in the splitting termvi j . Thus we arrive at the fol-
lowing equations for the density matrix elementsrgigj

, rgiej
,

reigj
, andreiej

:

] rgigj

] t
= o

ek

S i

"
«dgiek

rekgj
+

i

"
«*dgiek

* rekgj
−

i

"
«dekgj

rgiek

−
i

"
«*dekgj

* rgiek
D − ivgigj

rgigj
+ o

eiej

Ggigj

eiej reiej
, s10d

] rgiej

] t
= o

ek

S i

"
«dgiek

rekej
+

i

"
«*dgiek

* rekej
D − o

gk

S i

"
«dgkej

rgigk

−
i

"
«*dgkej

* rgigk
D − ivgiej

rgiej
−

G

2
rgiej

, s11d

] reigj

] t
= o

gk

S i

"
«deigk

rgkgj
+

i

"
«*deigk

* rgkgj
D − o

ek

S i

"
«dekgj

reiek

−
i

"
«*dekgj

* reiek
D − iveigj

reigj
−

G

2
reigj

, s12d

] reiej

] t
= o

gk

S i

"
«deigk

rgkej
+

i

"
«*deigk

* rgkej
−

i

"
«dgkej

reigk

−
i

"
«*dgkej

* reigk
D − iveiej

reiej
− Greiej

. s13d

The matrix elements of the typedeigj
;keiud ·eugjl can be cal-

culated using the standard angular momentum algebra
[17,25,26].

Now, in order to eliminate the fast oscillations with opti-
cal frequencyv̄, we make the following substitutions:

rgigj
= rgigj
˜ = rgigj

,

rgiej
= rgiej
˜eisv̄−kv̄·vdt+iFstd,

reigj
= reigj
˜e−isv̄−kv̄·vdt−iFstd,

reiej
= reiej
˜ = reiej

. s14d

By using the rotating-wave approximation[11] and ne-
glecting terms with double optical frequency, we arrive at

] rgigj

] t
= o

ek

S i

"
u«v̄udgiek

* rekgj
˜ −

i

"
u«v̄udekgj

rgiek
˜ D − ivgigj

rgigj

+ o
eiej

Ggigj

eiej reiej
, s15d

] rgiej
˜

] t
=

i

"
u«v̄uo

ek

dgiek

* rekej
−

i

"
u«v̄uo

gk

dgkej

* rgigk

− isv̄ − k v̄v + vgiej
drgiej
˜ −

G

2
rgiej
˜ − i

] Fstd
] t

rgiej
˜ ,

s16d

] reigj
˜

] t
=

i

"
u«v̄uo

gk

deigk
rgkgj

−
i

"
u«v̄uo

ek

dekgj
reiek

+ isv̄ − k v̄v − veigj
dreigj
˜ −

G

2
reigj
˜ + i

] Fstd
] t

reigj
˜ ,

s17d

] reiej

] t
= o

gk

S i

"
u«v̄udeigk

rgkej
˜ −

i

"
u«v̄udgkej

* reigk
˜ D − iveiej

reiej

− Greiej
. s18d
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C. Atoms in a fluctuating optical field

Equations(15)–(18) are stochastic differential equations
[27] with stochastic variable]Fstd /]t. In an experiment, as a
rule, we deal with quantities that are averaged over the time
intervals that are large in comparison with the phase-
fluctuation time in the excitation-light source, therefore we
need to perform a statistical averaging of the above equa-
tions. In order to do that, we solve Eqs.(16) and (17) [with
initial condition rgiej

st0d=reigj
st0d=0] and then take a formal

statistical average over the fluctuating phases,

] krgigj
l

] t
= o

ek

S i

"
u«v̄udgiek

* krekgj
˜l −

i

"
u«v̄udekgj

krgiek
˜lD

− ivgigj
krgigj

l + o
eiej

Ggigj

eiej kreiej
l, s19d

krgiej
˜l =

i

"
u«v̄uo

ek

dgiek

* E
t0

t

ef−isv̄−kv̄·v+vgiej
d−sG/2dgst−t8d

3krekej
st8de−ifFstd−Fst8dgldt8

−
i

"
u«v̄uo

gk

dgkej

* E
t0

t

ef−isv̄−kv̄·v+vgiej
d−sG/2dgst−t8d

3krgigk
st8de−ifFstd−Fst8dgldt8, s20d

kreigj
˜l =

i

"
u«v̄uo

gk

deigk
E

t0

t

efisv̄−kv̄·v−veigj
d−sG/2dgst−t8d

3krgkgj
st8deifFstd−Fst8dgldt8

−
i

"
u«v̄uo

ek

dekgj
E

t0

t

efisv̄−kv̄·v−veigj
d−sG/2dgst−t8d

3kreiek
st8deifFstd−Fst8dgldt8, s21d

] kreiej
l

] t
= o

gk

S i

"
u«v̄udeigk

* krgkej
˜l −

i

"
u«v̄udgkej

* kreigk
˜lD

− iveiej
kreiej

l − Gkreiej
l. s22d

Now we employ the relation(3), which allows us to use
the decorrelation approximation[28–30]. The decorrelation
approximation means that we neglect the fluctuations of
raiaj

stdsa=e,gd around their mean valuekraiaj
stdl, and thus

separate the atomic and field variables in Eqs.(20) and(21),

kraiaj
st8de±ifFstd−Fst8dgl = kraiaj

st8dlke±ifFstd−Fst8dgl, s23d

wherea=e,g. The decorrelation approximation in general is
valid only for Wiener-Levy-type(see below) phase fluctua-
tions [30,31]. In the case of a general stochastic field, the
decorrelation approximation can be used as a first approxi-
mation only for weak fields below saturation[29,30].

In order to evaluate the correlation function
ke±ifFstd−Fst8dgl, we assume two simple models, which lead to
similar results. The first one is the “phase jump” model

[32–34], which assumes that the phase remains constant ex-
cept for sudden random “jump,” when it changes to a new
constant value. This model is used to describe the fluctua-
tions from spectral lamps when the dominant mechanism for
the linewidth broadening is determined by the collisions be-
tween the radiating atoms or molecules[22,32,33]. The sec-
ond model is the “phase-diffusion” model[30,31,35,36],
which assumes the continuous random diffusion of the
phase. This model is used to describe the fluctuations from
single-mode lasers with fluctuating phase[22,35,36].

1. “Phase jump” model

Our analysis of phase jumps in excitation radiation is
based on the detailed analysis of the model in the case of
optical Bloch equations performed in[32–34]. The random
jump process is Poissonian in nature—the probability for the
phase to changeN times during timet− t8 is

PN =
1

N!
S t − t8

T
DN

e−st−t8d/T, s24d

whereT is the average time between successive phase jumps.
Now we defineke±iDFl as the average phase change during
one jump. If during the timet− t8 there has been only one
phase jump, thenke±ifFstd−Fst8dgl1=ke±iDFl. Obviously, if dur-
ing the time t− t8 there has beenN phase jumps, then
ke±ifFstd−Fst8dglN=ke±iDFlN, as every jump on average adds one
more multiplierke±iDFl. In order to get the final expression

for ke±ifFstd−Fst8dgl, we must average over every possible num-
ber N=0–` of phase jumps during timet− t8,

ke±ifFstd−Fst8dgl = o
N=0

`

PNke±ifFstd−Fst8dglN

= e−st−t8d/To
N=0

`
1

N!
S t − t8

T
ke±iDFlDN

= efst−t8d/Tgs1−ke±iDFld. s25d

At this point we make further simplifications. We consider
the case, when there is no correlation of the phase values
before and after the jump[32]. ThenT is also the correlation
time of the phase(on average after the timeT the phase
“forgets” its past) T=2/Dv. We also assume that all phase
values occur with equal probability. Thenke±iDFl=0, and Eq.
(25) becomes

ke±ifFstd−Fst8dgl = e−sDv/2dst−t8d. s26d

This means that the spectral distribution of the exciting light
is Lorentzian with a FWHMDv.

2. “Phase-diffusion” model

Our analysis of the influence of phase diffusion of the
excitation radiation on the interaction of laser radiation with
atoms is based on the phase-diffusion model analyzed in
[29–31,35,36]. In the phase-diffusion model, the field has a
constant amplitude, but its phase is a fluctuating quantity
which obeys the Langevin equation
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dFstd
dt

= §std, s27d

where §std is a Gaussian random force with a correlation
function

k§std§st8dl = bbe−but−t8u, s28d

k§stdl = 0, s29d

which means that§std obeys the Langevin equation for
Brownian motion[22,27],

d

dt
§std + b§std = Fstd, s30d

whereFstd is ad-correlated Gaussian force fulfilling the con-
dition

kFstdFst8dl = 2bb2dst − t8d. s31d

The meaning of the parametersb andb can be understood
from Eqs.(27)–(31). The quantity 1/b is the correlation time
of the phase time derivative§std, but b gives the bandwidth
of the field in the limitb→`. Explicit expressions forb and
b in terms of fundamental laser constants are discussed by
Haken in[37]; see also[38].

The spectrum of the exciting radiation described by Eqs.
(27)–(31) is given by the Fourier transform of the correlation
function,

ke±ifFstd−Fst8dgl = expF− bSut − t8u +
1

b
se−but−t8u − 1dDG .

s32d

For b@b, the spectrum is Lorentzian with a FWHM
Dv=2b and a cutoff at frequenciesb, but forb!b the spec-
trum is Gaussian with a FWHMÎ8lns2dbb.

In the limit b→`, the spectrum is pure Lorentzian with a
FWHM Dv=2b and§std becomesd-correlated,

k§std§st8dl = 2bdst − t8d, s33d

but the phaseFstd determined by a Wiener-Levy stochastic
process. As mentioned above, the Wiener-Levy process is the
only one for which the decorrelation approximation is math-
ematically rigorous[29–31]. It is easily understood as in this
process the relevant fluctuating quantity§std is d-correlated
[the correlation time 1/b of §std tends to zero whenb→`],
and thus we can always separate the time scales of evolution
of kraiaj

st8dl andke±ifFstd−Fst8dgl in Eq. (23). The Wiener-Levy
stochastic process is a nonstationary Markov-Gaussian pro-
cess [27], and is described by the Langevin equation for
Brownian motion with negligible acceleration[22,27,30,31],
which can be shown to be equivalent to the diffusion equa-
tion [22]. For the Wiener-Levy process, the relation(32) be-
comes

ke±ifFstd−Fst8dgl = expf− but − t8ug = e−sDv/2dst−t8d, s34d

where we have used the fact thattù t8.

The Lorentz profile is not a good description of the wings
of any laser spectrum, thus this model is appropriate for
rather small detunings. However, as shown in[35,36], for
b@b (or b@Dv) in the limit b@G ,VR, the line shape of
the exciting light is Lorentzian with a cutoff at frequenciesb.
In this case, the damping termDv /2 is simply multiplied by
the cutoff term, dependent on the detuning[35,36]. This cor-
responds to a more realistic model of the laser spectrum. We
also have to remember that for the rotating-wave approxima-
tion, v0@b, as b is the correlation time of the phase time
derivative§std=dFstd /dt.

D. The effective relaxation caused by the fluctuations
of the exciting light

As can be seen[Eqs.(26) and(34)], both approaches give
similar results for the time-averaged phase fluctuation
value—the effect of the phase fluctuations on the density
matrix is simply to add the additional relaxation term, equal
to the HWHM of the exciting light. Now we use Eqs.(26)
and(34) to rewrite Eqs.(19)–(22) (for simplicity in the sub-
sequent expressions, we further drop the averaging brackets),

] rgigj

] t
= o

ek

S i

"
u«v̄udgiek

* rekgj̃
−

i

"
u«v̄udekgj

r̃giek
D

− ivgigj
rgigj

+ o
eiej

Ggigj

eiej reiej
, s35d

rgiej̃
=

i

"
u«v̄uo

ek

dgiek

* E
t0

t

expf− isv̄ − k v̄ ·v + vgiej
d

− sG/2 + Dv/2dgst − t8drekej
st8ddt8

−
i

"
u«v̄uo

gk

dgkej

* E
t0

t

expf− isv̄ − k v̄ ·v + vgiej
d

− sG/2 + Dv/2dgst − t8drgigk
st8ddt8, s36d

reigj̃
=

i

"
u«v̄uo

gk

deigk
E

t0

t

expfisv̄ − k v̄ ·v − veigj
d

− sG/2 + Dv/2dgst − t8drgkgj
st8ddt8

−
i

"
u«v̄uo

ek

dekgj
E

t0

t

expfisv̄ − k v̄ ·v − veigj
d

− sG/2 + Dv/2dgst − t8dreiek
st8ddt8, s37d

] reiej

] t
= o

gk

S1

"
u«v̄udeigk

rgkej
˜ −

i

"
u«v̄udgkej

* reigk
˜ D

− iveiej
reiej

− Greiej
. s38d

III. RATE EQUATIONS

For the sake of simplicity, we further assume(with vB
characterizing the Zeeman splitting)
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Dv @ vB, s39d

though this condition can be avoided at the expense of com-
plicating the final rate equations. Equation(39) means that
we can write

SG

2
+

Dv

2
D + isv̄ − k v̄ ·v + vgiej

d

< SG

2
+

Dv

2
D + isv̄ − k v̄ ·v − v0d, s40d

SG

2
+

Dv

2
D − isv̄ − k v̄ ·v + veigj

d

< SG

2
+

Dv

2
D + isv̄ − k v̄ ·v − v0d, s41d

At this point we go further and assume certain conditions
which allow us to simplify significantly the expressions for
optical coherences(36) and(37). These conditions are either
BLA (1)–(3) or the steady-state[(60)—see below] condi-
tions. Under these circumstances, the expressions for optical
coherences(36) and (37) become

rgiej
˜ =

i

"

u«v̄u

SG

2
+

Dv

2
D + isv̄ − k v̄v − v0d

3So
ek

dgiek

* rekej
− o

gk

dgkej

* rgigkD , s42d

reigj
˜ =

i

"

u«v̄u

SG

2
+

Dv

2
D − isv̄ − k v̄v − v0d

3So
gk

deigk
rgkgj

− o
ek

dekgj
reiekD . s43d

Now, by substituting Eqs.(42) and (43) in Eqs. (35) and
(38), we arrive at the final rate equations,

] rgigj

] t
= Gp o

ek,em

sd1
giekd*d1

emgjrekem
− o

ek,gm

FSGp

2
+ iDEpD

3sd1
giekd*d1

ekgmrgmgj
− SGp

2
− iDEpDsd1

gmekd*

3d1
ekgjrgigm

G − ivgigj
rgigj

+ o
eiej

Ggigj

eiej reiej
, s44d

] reiej

] t
= Gp o

gk,gm

d1
eigksd1

gmejd*rgkgm
− o

gk,em

FSGp

2
− iDEpD

3d1
eigksd1

gkemd*remej
− SGp

2
+ iDEpD

3d1
emgksd1

gkejd*reiem
G − iveiej

reiej
− Greiej

, s45d

whered1
emgj ;kemud1·eugjl andd1 denotes the electric dipole

moment unity vectorsd1=d / udud, and thus matrix elements
deigj

are written as

deigj
= d1

eigjkeidigl, s46d

where keidigl is the reduced dipole matrix element. Note
that for the steady-state situation we must consider the con-
dition (60) in the above equations. The quantitiesGp andDEp
are defined as

Gp

2
=

u«v̄u2

"2 3 ukeidiglu2 3

SG

2
+

Dv

2
D

SG

2
+

Dv

2
D2

+ sv̄ − k v̄ ·v − v0d2

,

s47d

DEp =
u«v̄u2

"2 3 ukeidiglu2 3
v̄ − k v̄ ·v − v0

SG

2
+

Dv

2
D2

+ sv̄ − k v̄ ·v − v0d2

.

s48d

The quantityGp is the probability per unit time of an
absorption of stimulated emission process, andDEp de-
scribes the light shifts[14] produced by the light irradiation
(dynamic Stark shift). For BLA conditions(1)–(3), Eqs.(47)
and (48) become

Gp

2
<

z«v̄z2

"2 3 ukeidiglu2 3

Dv

2

SDv

2
D2

+ sv̄ − k v̄ ·v − v0d2

,

s49d

DEp <
u«v̄u2

"2 3 zkeidiglz2 3
v̄ − k v̄ ·v − v0

SDv

2
D2

+ sv̄ − k v̄ ·v − v0d2

.

s50d

Note also that the phase fluctuations(described by the
above models) reduce the saturation on resonancesv̄
−k v̄ ·v−v0=0d by a factor G / sG+Dvd, and increase the
saturation faroff resonancesv̄−k v̄ ·v−v0@G ,Dvd by a fac-
tor sG+Dvd /G.

When the density matrix for the excited state is calcu-
lated, one can obtain the fluorescence intensity with specific
polarization along the unit vectore1 as [14,17,39]

Ise1
W d = Ĩ0 o

gi,ei,ej

sdgiej

sobdd*deigi

sobdreiej
, s51d

where Ĩ0 is a proportionality coefficient and the matrix ele-
mentdgiej

sobd=kgiud ·e1uejl contains the polarization vectore1 of
the light which is detected.
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IV. ANALYSIS AND CONCLUSIONS

A. Perturbation theory approach

The obtained rate equations for Zeeman coherences coin-
cide with equations obtained earlier in the perturbation
theory approach in[12]. In that approach the ratios between
rate constants involved in the problemsGp,Gd and the line-
width of the excitation radiationDv are used as small pa-
rameters. Here we stress that, although the obtained equa-
tions coincide, the approach used in this study is different
and allows us to examine in more detail the limits of usage
of rate equations for Zeeman coherences to analyze specific
experiments. To compare the two approaches, let us have a
brief look at the method used and conclusions obtained with
perturbation theory.

Let Tp=1/Gp be the time characterizing the evolution of
the density matrix under the effect of coupling with the light
field. In the following analysis, it is assumed that the inten-
sity is sufficiently low so thatTp is much longer than the
correlation timeT=1/Dv of the light wave,

Dv @ Gp. s52d

Now consider a time intervalDt such that

Tp,t @ Dt @ T, s53d

where t=1/G. SinceTp,t@Dt, one can conclude thatrst
+Dtd−rstd is very small and can be calculated by perturba-
tion theory. By using perturbation theory, it is shown in[12]
that the average variation ofr, krst+Dtd−rstdl [the average
is taken over all possible values of the random function
«std—see below], is linear inDt and only depends onrstd,

krst + Dtd − rstdl
Dt

=
Drstd

Dt
. s54d

This means that we can replaceDrstd /Dt with the time
derivativedrstd /dt, provided that we never usedrstd /dt to
describe the changes ofrstd over time intervals that are
shorter than correlation timeT of the light wave which drives
the atoms. The quantityDrstd /Dt=drstd /dt is called the
“coarse-grained” derivative[40].

In [12], the exciting light is taken to be the superposition
of parallel plane waves having the same polarizatione, but
different amplitudesu«mu, frequenciesvm, and phasesFm,

Estd = «stde+ «*stde* , s55d

«std = o
m

u«mue−iFm−isvm−kvm·vdt. s56d

BLA relations (1)–(3) hold and the relative phases of the
different modes are assumed to be completely random and
thus obey the correlation relation,

ke−isFm−Fm8dl = dmm8. s57d

The instantaneous electric field«std of the light wave may
thus be considered as a stationary random function, which
obeys the correlation relation,

k«std«*st − tdl = o
m,m8

u«muu«m8uke
−isFm−Fm8dl

3e−isvm−kvm·vdteisvm8−kvm·vdst−td

= o
m

u«mu2e−isvm−kvm·vdt. s58d

Applying perturbation theory, after some calculations with
the consideration of Eq.(58) and the “coarse-grained” de-
rivative, the rate equations are obtained[12], again consid-
ering the condition(39) for simplicity. The obtained rate
equations are exactly the same as the above derived equa-
tions (44) and (45), but with Gp and DEp having a slightly
different form as defined in Eqs.(47)–(50). This mismatch is
easily avoided if instead of the exciting-light model
(55)–(58) we take the model(4), (5), (26), and(34). Then the
rate equations are the same as Eqs.(44) and (45), with Gp
andDEp defined as in Eqs.(49) and (50).

Thus the perturbation theory approach is summarized as
follows: we definea priori the BLA conditions(1)–(3) and
then use the perturbation theory to obtain the rate
equations—and thus we are restricted to the BLA case.

However, in our approach we obtain the “phase-averaged”
OBE and then it is possible to choose between the BLA
(1)–(3) or steady-state(60) possibilities.

Thus we arrive at the conclusion stated above that the
approach discussed in this paper allows us to examine the
limits of usage of the rate equations for Zeeman coherences
to a greater detail than the perturbation theory approach.
Therefore, it can be applied to analyze a larger number or
experimental situations.

B. Velocity dependence

When we look at Eqs.(47)–(50), we see thatGp (the in-
duced transition rate) andDEp (the dynamic Stark shift) are
velocity-dependent, and thus also are Eqs.(44) and (45).
This means that in describing the observable signal, we need
to take into account all velocity groups involved(note that
we have already assumed that different velocity groups do
not interact—the density of atoms is sufficiently low). In a
standard method, one has to determine the signal dependence
on velocity and then sum(integrate) over the velocities(of
course, assuming that velocity distribution is known). How-
ever, usually the signal dependence on velocity cannot be
found in analytical form, as can be seen from Eqs.(44)–(50).
Thus a large amount of calculations is necessary to deter-
mine this dependence—and still it is just an approximation.

The situation is simplified only for a specific kind of ex-
periments. For example, if we consider a case where the
exciting linewidthDv is much larger than the Doppler width
DvD of the atomic line(as it was originally assumed in the
perturbation-theory approach as given in[12]),

Dv @ DvD, s59d

then, as mentioned above, the atomic response does not de-
pend on the velocity of translation motion of the atom and
the quantum density matrixr refers to internal variables
only. In such a case, we obtain the rate equations by simply
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putting kÃv=0 in Eqs.(44) and (45), which is the same as
considering the atomic velocity groupkÃv=0 only. Only one
velocity group is also involved in experiments with cold
atomic gases, atomic beams, etc.

Nevertheless, we have successfully used the rate equa-
tions for Zeeman coherences(44) and(45) in modeling vari-
ous experiments[18–21]. In these experiments, Eq.(59)
clearly did not hold, nevertheless in describing experimental
signal from all velocity groups, we have used the calculated
signal from just one velocity groupkv̄v=0 [note that at reso-
nanceDEpsk v̄ ·v=0d=0]. It is clear, that in this case for the
experimental and simulation results to coincide, we cannot
use the exact expressions(47) and (49) for Gpsk v̄ ·v=0d.
Thus we must consider the “effective” induced transition rate
Gp

eff, which in general does not coincide withGpsk v̄ ·v=0d.
Using the signal from the velocity groupkv̄v=0 as the

calculated signal is justified if we know the relation between
Gpsk v̄ ·v=0d and Gp

eff in advance. In reality, this relation is
known only in some specific cases—for example, for the
“steady-state” excitation with laser intensities below
saturation—so we know thatGp

eff,Gpsk v̄ ·v=0d, as the sig-
nal from the velocity groupkv̄v=0 is proportional to the
signal from all velocity groups—see[17]. However, in most
cases establishing the relation betweenGpsk v̄ ·v=0d andGp

eff

is rather complicated as it involves a large amount of calcu-
lations.

Therefore, in the analysis of experiments we have used
the following approach—the signal from the velocity group
kv̄v=0 is calculated and then the best fit to an experiment is
found—thus experimentally finding the relation between
Gpsk v̄ ·v=0d and Gp

eff. In order to predict further results, we
use the extrapolation and various other mathematical tech-
niques. This method has proven to be successful in many
cases.

C. Steady-state excitation

As was shown above generally, the use of the rate equa-
tions for Zeeman coherences to describe the time-dependent
behavior of atoms in laser and magnetic fields requires cer-
tain conditions regarding absorption rate related to the light
intensity and spectral width of the laser line. At the same
time, very often in coherent atomic-excitation experiments
the “steady state” or stationary excitation conditions are
reached—the excitation light does not depend on time, which

implies the same for the total density matrixrstd. When an
atom is suddenly placed in an optical field, the steady-state
condition is reached only after some time, after which it
remains in this constant state forever(unless, of course, the
conditions imposed on the system are changed). This means
that, mathematically, we can obtain the steady-state solution
if we considerrst=`d. It is also obvious that for the steady
state, the time derivative of the density matrix is zero and
thus mathematically we can also obtain the steady state by
simply puttingdrstd /dt=0 for both optical and Zeeman co-
herences.

Thus under the steady-state conditions, we can express
the optical coherences in terms of Zeeman coherences from
the OBE directly, without any assumptions. In doing so, we
obtain the rate equations for Zeeman coherencesrgigj

std and
reiej

std, which now form a set of linear equations, because of
the steady-state condition,

drgigj
std

dt
= 0,

dreiej
std

dt
= 0. s60d

As mentioned above, under the steady-state conditions, in
principle, there are no limitations in the use of the rate equa-
tions, except for the steady-state condition(60) itself.

D. The case of large Zeeman splitting

In the case of large Zeeman splittings, that is, when Eq.
(39) does not hold, the final rate equations become more
complicated. However, the derivation procedure, of course,
is still the same: we assume the already mentioned condi-

tions, then simplify optical coherencesrgiej̃
and reigj
˜ from

Eqs.(36) and(37), and substitute them in Eqs.(35) and(38).
Thus we arrive at the final rate equations, which now become
more complicated than Eqs.(44) and(45). The definitions of
Gp and DEp also become different from those in Eqs.
(47)–(50). All of the above analysis still holds.
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