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Dependence of the shapes of nonzero-field level-crossing signals in rubidium atoms
on the laser frequency and power density
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We studied magneto-optical resonances caused by excited-state level crossings in a nonzero magnetic field.
Experimental measurements were performed on the transitions of the D2 line of rubidium. These measured signals
were described by a theoretical model that takes into account all neighboring hyperfine transitions, the mixing
of magnetic sublevels in an external magnetic field, the coherence properties of the exciting laser radiation, and
the Doppler effect. Good agreement between the experimental measurements and the theoretical model could be
achieved over a wide range of laser power densities. We further showed that the contrasts of the level-crossing
peaks can be sensitive to changes in the frequency of the exciting laser radiation as small as several tens of
megahertz when the hyperfine splitting of the exciting state is larger than the Doppler broadening.
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I. INTRODUCTION

Level-crossing spectroscopy has long been used to study
lifetimes of atomic states (using zero-field resonances) or
atomic constants, such as the magnetic moments and fine and
hyperfine constants (using nonzero-field resonances) [1,2].
The technique most often takes advantage of resonances in
plots of the laser-induced fluorescence (LIF) in a particular
direction with a given polarization as a function of the magnetic
field. The resonances are related to the type of coherent
excitation of magnetic sublevels that becomes possible when
some of them, whose z components mF of the total angular
momentum F differ by �mF = q, become degenerate at
particular magnetic-field values [3]. For linearly polarized
excitation q = ±2. Such a degeneracy always occurs at zero
magnetic field where all magnetic sublevels belonging to a
particular hyperfine level F have the same energy. This case
of zero-field level crossing is known as the Hanle effect, first
observed by Hanle himself [4]. However, as can be seen in
Fig. 1, it also happens at certain nonzero magnetic-field values
that some magnetic sublevels from different hyperfine F states
can cross. If the requirement for coherently excited magnetic
sublevels with a certain �m is fulfilled, one speaks of nonzero-
magnetic-field level crossings. The coherent evolution of such
systems can be described with the optical Bloch equations for
the density matrix. However, in order to describe accurately
real systems, it is necessary to take into account all neighboring
hyperfine transitions, the magnetic-field-induced mixing of
magnetic sublevels of identical m that belong to different
hyperfine levels, the Doppler profile, and the coherence
properties of the radiation. Models with these characteristics
have been developed over the years to describe zero-field
resonances in the ground and excited states with great precision
[5]. In this work, we show that nonzero level-crossing signals
in magnetic fields can be described by a theoretical model
over a wide range of magnetic fields to nearly experimental
accuracy. Moreover, the model succeeds also at laser power
densities for which the excitation is nonlinear and where the
effects of optical pumping can be noted. We also show that
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by carefully selecting the laser frequency it is possible to
increase the amplitude of level-crossing resonances. Thus it
is possible to optimize experimental conditions to maximize
the amplitude of a particular resonance, which can be useful
in applications such as measurements of magnetic fields in the
range of tens of gauss or determination of hyperfine constants
in states for which they are not yet known. The ability to
describe level-crossing signals precisely can be useful for
determining atomic constants, especially in situations where
the large number of crossing points washes out individual
resonances.

The first theory of level-crossing signals was given by
Breit in 1933 [6], and the first application was to measure the
fine-structure splitting between the helium P states [7]. These
measurements were described in terms of Breit’s formalism
by Franken in 1961 [8]. Since then, these signals were used
extensively for a time to make measurements of the fine and
hyperfine constants in atoms. For example, the technique was
used to obtain hyperfine constants in rubidium [9] and cesium
[10] (see Ref. [1] for a review of many results). Theoretical
models of the ground-state Hanle effect were used by Picqué
in 1978 [11]. Over time, these models became more and more
sophisticated as different effects were included [12]. Precise
analytical models are also possible [13], but only for lower
laser power in the linear regime.

The present work revisits an earlier study published in
2003 [14], which offered only a model that was limited
to the cycling transitions in the limit of weak excitation
and thus could provide only a qualitative description of the
experimental signals. We now show that the signals can be
described very precisely even in the case of strong, nonlinear
excitation with a model based on the optical Bloch equations
and valid also for nonlinear excitation. Our model takes into
account possible contributions to the transition probabilities
from all neighboring hyperfine transitions, the effects of
Doppler broadening, the splitting of the hyperfine levels in the
magnetic field, and the coherence properties of the exciting
laser radiation [15]. This model had been widely applied to
zero-field resonances in the ground state [5] and achieved good
agreement between experimentally measured and calculated
curves. The experimental parameters, in particular the laser
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FIG. 1. (Color online) Energy shifts as a function of magnetic field of excited-state hyperfine magnetic sublevels for 87Rb (left) and 85Rb
(right). Zero energy corresponds to the excited-state fine-structure level 5 2P3/2.

frequency, were carefully controlled during the measurements
in order to allow precise comparison with theory. In addition,
experimental measurements and theoretical calculations were
used to investigate the influence of the laser frequency on the
relative contrasts of the level-crossing peaks at nonzero-field
values.

II. EXPERIMENT

Figure 1 shows the relative energies of the excited-state
magnetic sublevels as a function of the magnetic field. Each
curve corresponds to a particular value mF of the projection
of the total angular momentum F on the z axis. As we used
linearly polarized exciting radiation, coherences can be formed
around the crossing points with �m = ±2, which are circled
and labeled by small Greek letters. The laser detuning is
measured relative to the energy difference between the ground-
state hyperfine level and the excited-state fine-structure level
for the transition being excited.

In this experiment natural atomic rubidium, confined in a
Pyrex cell with optical quality windows (25 mm long and
25 mm in diameter), was placed in the middle of a three-axis
set of Helmholtz coils. The radii of the Helmholtz coils
were 125 mm, 165 mm, and 216 mm. The field produced
by the middle coil was scanned and defined the z axis. The
other two coils were used to compensate the Earth’s magnetic
field. As the magnetic field was scanned through a triangular
pattern with a frequency of 0.02 Hz, fluorescence spectra were
acquired. The laser wavelength was determined by means
of a saturated absorption spectroscopy setup in conjunction
with a WS-7 wavemeter from HighFinesse. It was monitored
during the scan with the wavemeter, and adjustments were
made if necessary. Using a bipolar Kepco BOP-50-8-M or
an Agilent N5770A power supply, magnetic fields of up to

120 G could be achieved. Laser radiation from an external
cavity diode laser passed through a chopper and entered the
cell with its propagation vector and electric-field vector both
perpendicular to the scanning magnetic field (see Fig. 2). The
temperature of the laser box and the diode were stabilized by
Thorlabs TED200 temperature controllers and the current was
controlled by a Thorlabs LDC205B current controller. The
diameter of the beam was 1.6 mm as measured by a Thorlabs
BP104-VIS beam profiler. The beam width was defined as
the full width at half maximum of the Gaussian intensity
profile. By means of a polarization rotator followed by a linear
polarizer, laser power values from 20 μW to 320 μW could
be achieved, which translated into laser power densities of
1 mW/cm2 to 16 mW/cm2. The LIF of two mutually perpen-
dicular components (one parallel and the other perpendicular
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FIG. 2. (Color online) Schematic drawing of the experimental
setup.
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to the exciting electric-field vector) passed through a lens
system with an acceptance of approximately 0.2 sr and was
detected by two Thorlabs FDS100 photodiodes located behind
a polarizing beam splitter. The signal from each photodiode
was amplified by a separate amplifier chain consisting of two
TL072D amplifiers, the first with transimpedance gain of 107

and the second with a voltage gain of 102. The signal was
then fed to a lock-in amplifier, which provided additional
gain between 103 and 105. A chopper in the main beam
path provided a reference freqency of 1 kHz. The lock-in
time constant was 200 μs. The signals were recorded using
an Agilent DSO5014A oscilloscope, which also averaged the
signals.

III. THEORETICAL MODEL

We describe the atomic system via its quantum density
matrix ρ, which is written in the basis of Zeeman sublevels for
the hyperfine structure of the D2 transition of atomic rubidium:
|ξi,Fi,mFi〉, where Fi denotes the quantum number of the total
atomic angular momentum in either the ground (i = g) or the
excited (i = e) state, mFi refers to the respective magnetic
quantum number, and ξi represents all other quantum numbers.
The time evolution of the density matrix ρ is governed by the
optical Bloch equations [16]:

ih̄
∂ρ

∂t
= [Ĥ ,ρ] + ih̄R̂ρ, (1)

where Ĥ denotes the full Hamilton operator of the system
and R̂ is the relaxation operator. The full Hamiltonian can be
expressed in terms of the unperturbed atomic Hamiltonian Ĥ0

determined by the internal dynamics of the atom, a term ĤB

that describes the interaction with the external magnetic field,
and a dipole interaction term V̂ = −d̂ · E(t):

Ĥ = Ĥ0 + ĤB + V̂ . (2)

As indicated, the interaction with the electromagnetic field
is treated in the dipole approximation [17]. The magnetic
interaction Hamiltonian can be written as

ĤB = μB

h̄
(gJ J + gI I) · B, (3)

where μB is the Bohr magneton, J and I are the total electronic
angular momentum and spin of the atomic nucleus, and gJ , gI

are the respective Landé factors. The interaction Hamiltonian
(3) consists of the interaction matrices for fixed projection
mF = mJ + mI of the angular momenta on the quantization
axis, which can be written in terms of Wigner 3j symbols [17].
Solving the eigenvalue problem for these matrices yields the
energy structure shown in Fig. 1, where J and I make up the
total atomic angular momentum F = J + I. The components
(ck) of the eigenvectors are used as mixing coefficients for the
chosen basis. The mixed atomic states have to be rewritten in
the presence of the magnetic field as

|ξ,F,m〉 =
∑

k

ck|ξ,Fk,m〉. (4)

The density matrix ρ can be divided into four parts: ρgg

and ρee are quadrants aligned along the main diagonal and
their diagonal elements correspond to the population of the
ground and excited states, respectively, while the off-diagonal

elements represent the coherences within the ground or excited
state and are called Zeeman coherences; ρge and ρeg are
called optical coherences and describe the transitions induced
by the exciting radiation. In order to describe the atomic
fluorescence one has to know the elements ρee. The atomic
dipole interaction with a classically oscillating electric field
characterized by a stochastic phase is considered. The rotating
wave approximation [18] is applied to simplify the Bloch
equations. Further, it is assumed that the density matrix does
not follow the rapid stochastic fluctuations in the phase of the
exciting radiation so that we may integrate the two of them
separately to adiabatically eliminate the optical coherences
from the equations. The time-averaged effect of the stochastic
phase oscillations leads to a finite term �ω [19] that describes
the spectral width of the excitation frequency. Thus, when the
optical coherences are adiabatically eliminated (see [15] for
more details), rate equations are obtained, which are valid for
steady-state excitation conditions, for the ρgg and ρee parts of
the density matrix:

∂ρgigj

∂t
= (

�giem
+ �∗

ekgj

) ∑
ek,em

d∗
giek

demgj
ρekem

−
∑
ek,gm

(
�∗

ekgj
d∗

giek
dekgm

ρgmgj
+ �giek

d∗
gmek

dekgj
ρgigm

)

− iωgigj
ρgigj

+
∑
ekel

�ekel

gigj
ρekel

− γρgigj
+ λδ(gi,gj ),

(5a)
∂ρeiej

∂t
= (

�∗
eigm

+ �gkej

) ∑
gk,gm

deigk
d∗

gmej
ρgkgm

−
∑
gk,em

(
�gkej

deigk
d∗

gkem
ρemej

+ �∗
eigk

demgk
d∗

gkej
ρeiem

)

− iωeiej
ρeiej

− (� + γ )ρeiej
. (5b)

The following terms are used in Eq. (5): �ij describes the
interaction strength between the atom and the laser radiation
and is defined below, dij is the dipole transition matrix element
that can be obtained from the reduced matrix element by means
of the Wigner-Eckart theorem [17], ωij is the energy difference
between levels |i〉 and |j 〉, �ekel

gigj
describes coherence transfer

to the ground state via spontaneous emission, γ is the transit
relaxation rate at which the atoms leave the interaction region,
� is the rate of the spontaneous transitions, λ describes the rate
at which “fresh”atoms enter the interaction region, and δ(i,j )
is the Kronecker δ symbol. We assume that atoms entering
the interaction region are completely depolarized and that the
atomic equilibrium density outside the interaction region is
normalized to unity; thus λ = γ .

The interaction strength �ij is given by

�ij = |εω̄|2
h̄2

1
�+γ+�ω

2 + ı̇(ω̄ − kω̄v + ωij )
, (6)

where εω̄ is the amplitude of the oscillating electric field,
ω̄ denotes the central frequency of the laser radiation, �ω is
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the laser linewidth, and kω̄v is the Doppler shift of the atomic
transition for an atom moving with velocity v. In the numerical
simulations, we define the Rabi frequency in the following
way:


R = k


|εω̄|||dJ ||
h̄

= k


||dJ ||
h̄

√
2I

εcn
, (7)

where k
 is a dimensionless fitting parameter, ||dJ || is the
reduced dipole element of the D2 transition whose value can
be found in [17], I is the excitation power density, ε ≈ 1 the
dielectric permeability of the medium, c the speed of light, and
n ≈ 1 is the index of refraction of the medium.

The transit relaxation rate was defined as

γ = kγ

v

d
, (8)

where kγ is a dimensionless fitting parameter, v is the mean
thermal velocity of atoms, and d is the laser beam diameter
described in Sec. II.

In this study, we numerically solved Eqs. (5) for steady-

state excitation conditions (
∂ρgi gj

∂t
= ∂ρei ej

∂t
= 0) to obtain the

Zeeman coherences ρgg and ρee. From this point it was
straightforward to obtain the fluorescence for some particular

polarization component defined by e:

Ifl(e) = Ĩ0

∑
gi ,ej ,ek

d (ob)∗
giej

d (ob)
ekgi

ρej ek
, (9)

where d
(ob)
ij are the dipole transition matrix elements for the

chosen observation component.
In order to take into account the classical movement of

atoms with velocity v we performed a numerical integration of
the fluorescence signal over the frequency distribution in the
Doppler profile.

IV. RESULTS AND DISCUSSION

As a first test of how well the model can describe nonzero
level-crossing signals, we used the model to reproduce the
experimental results of nonzero level-crossing signals for the
Fg = 2 −→ Fe = 1,2,3 transitions of 85Rb. The results are
shown in Fig. 3. Measurements were carried out for a range of
laser power densities I from 1 mW/cm2 to 16 mW/cm2. The
Rabi frequency 
R was assumed to vary as in Eq. (7), where
the same value of k
 = 0.5 was used for all calculations in
this paper. This value was chosen to provide the best overall
agreement, while being consistent with a rough estimation
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FIG. 3. (Color online) Intensity difference (I⊥ − I‖) versus magnetic field for the Fg = 2 −→ Fe = 1,2,3 transitions of 85Rb. The different
panels correspond to different laser power densities. Markers represent the results of experimental measurements, while the curves represent
the results of theoretical calculations.
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FIG. 4. (Color online) Theoretical calculations of I⊥ − I‖ versus magnetic field for (a) the Fg = 2 −→ Fe = 1,2,3 transition of 87Rb,
(b) the Fg = 1 −→ Fe = 0,1,2 transition of 87Rb, (c) the Fg = 2 −→ Fe = 1,2,3 transition of 85Rb, and (d) the Fg = 3 −→ Fe = 2,3,4
transition of 85Rb. The different curves in each figure correspond to different laser frequencies. The small Greek letters indicate level-crossing
points (see Fig. 1).

based on theoretical considerations: k
 would be equal to
unity if the laser intensity were constant over the beam profile.
The other parameters that were optimized in a similar way
were the laser linewidth �ω = 2 MHz and the proportionality
constant between the laser beamwidth and the transit relaxation
time kγ = 1. For each of these parameters, one unique value
was used in all the calculations presented in this work. The y

axis of the figures gives the difference of the LIF intensity of
the two perpendicularly polarized LIF components. The units
of this LIF intensity difference are arbitrary, but they have
been self-consistently normalized for all signals of a particular
isotope. The agreement between theory and experiment was
excellent at low laser power densities and still quite good
at I = 16 mW/cm2. At higher laser power densities the
model becomes less accurate, because at higher power it is no
longer sufficient to describe the transit relaxation by a single
rate constant [20] as this model does. It is also no longer
adequate to treat the approximately Gaussian beam profile of
the experiment as a rectangular profile in the calculation. This
simplification amounts to using an average rate constant that
corresponds to the average laser power density, which yields
satisfactory results at low laser power densities. However,
when the laser power density is high, parts of the beam are in
saturation, and the simplification breaks down. Nevertheless,
the model seems adequate for predicting level-crossing signals
with �m = ±2.

Next we turned our attention to the influence of the laser
detuning on the level-crossing spectra. Figure 4 presents
the results of theoretical calculations that show how the relative
amplitudes of the nonzero-field level-crossing peaks can be
influenced by the tuning of the exciting laser radiation. The
detunings of the different curves plotted are measured with
respect to the energy difference between the indicated ground-
state hyperfine level and the excited-state fine-structure level.
First of all, it was apparent that significant variations in the
amplitudes of the level-crossing peaks could be achieved only
in 87Rb [Figs. 4(a) and 4(b)]. The amplitude of the peak at
level crossing γ could be increased by almost a factor of 2
when exciting from the Fg = 2 ground state. When exciting
from the Fg = 1 ground state, the amplitude of the peaks that
correspond to level crossings α and β can be approximately
doubled. In the case of 85Rb [Figs. 4(c) and 4(d)] Doppler
broadening washes out any possible effects, because the
hyperfine splitting of the excited state in this isotope is small
relative to the Doppler width. The energy difference between
the F = 1 and F = 4 states of 85Rb is slightly more than
200 MHz, whereas the full width at half maximum of the
Doppler profile is around 500 MHz at room temperature.
Although the change in laser frequency was smaller in absolute
terms for the calculations with 85Rb than for the calculations
with 87Rb, the change in detuning as a fraction of hyperfine
splitting was roughly equal. Detuning the laser by a larger
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FIG. 5. (Color online) Intensity difference (I⊥ − I‖) versus magnetic field for the Fg = 2 −→ Fe = 1,2,3 transitions of 85Rb with the laser
detuned from the 5 2S1/2(Fg = 2) −→ 5 2P3/2 transition by (a) 65 MHz and (b) −44 MHz. Markers show the results of a measurement with
the laser power density I = 2 mW/cm2, while the solid line shows the results of a calculation with Rabi frequency 
R = 4 MHz.

amount for 85Rb would result in significantly lower signals
without affecting peak amplitude significantly.

Next we compare experimental level-crossing curves ob-
tained at different values of the laser detuning with the
calculated curves for those same detuning values to see if
the predicted changes in peak amplitudes can be observed.
Figure 5 shows results for 85Rb. Figure 5(a) shows the results
of an experiment in which the laser was detuned from the
exact energy difference between the ground state with Fg = 2
and the 5 2P3/2 state by 65 MHz. The results shown in
Fig. 5(b) were obtained with a laser detuning of −44 MHz.
Similarly, Fig. 6(a) corresponds to a measurement with the
laser detuning between the ground state of 85Rb with Fg = 3
and the 5 2P3/2 state of −63 MHz, while Fig. 6(b) corresponds
to a measurement with a laser detuning of 22 MHz. As
expected, the relative amplitudes of the level-crossing peaks
are not very sensitive to detuning. We note that the theoretical
model describes the experimental curves quite well. These

transitions also illustrate the necessity of including magnetic
sublevel mixing in the theoretical model. For example, the
resonance at position ε (see Fig. 1) involves a crossing of the
sublevels labeled by Fe = 3,mF = −1 and Fe = 4,mF = −3.
Notwithstanding the selection rules for B = 0 (�F = 0, ± 1),
this level crossing can produce a resonance even when the
excitation takes place from the ground state with Fg = 2.
The reason is that F ceases to be a good quantum number
when the magnetic field is nonzero, and, at high values of
the magnetic field, there is a sufficiently high probability of
exciting the state labeled by Fe = 4,mF = −3 from Fg = 2.
However, the state with maximum projection of angular
momentum (Fe = 4,mF = 4) is not mixed. Thus it is not
possible to see the peak labeled ζ when exciting from Fg = 2,
but it appears when the excitation takes place from Fg = 3.
These considerations are borne out by the theoretical and
experimental results shown in Figs. 5 and 6. A theoretical
model, such as the one in [14], that did not take into account
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FIG. 6. (Color online) Intensity difference (I⊥ − I‖) versus magnetic field for the Fg = 3 −→ Fe = 2,3,4 transitions of 85Rb with the laser
detuned from the 5 2S1/2(Fg = 3) −→ 5 2P3/2 transition by (a) −63 MHz and by (b) 22 MHz. Markers show the results of a measurement with
the laser power density I = 2 mW/cm2, while the solid line shows the results of a calculation with Rabi frequency 
R = 4 MHz.
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FIG. 7. (Color online) Intensity difference (I⊥ − I‖) versus magnetic field for the Fg = 1 −→ Fe = 0,1,2 transitions of 87Rb with the laser
detuned from the 5 2S1/2(Fg = 1) −→ 5 2P3/2 transition by (a) 36 MHz and by (b) −190 MHz. Markers show the results of a measurement
with the laser power density I = 4 mW/cm2, while the solid line shows the results of a calculation with Rabi frequency 
R = 6 MHz.

magnetic sublevel mixing at high magnetic fields would not
have been able to reproduce the resonance at position ε for an
excitation from Fg = 2 [14].

Figures 7 and 8 show results for 87Rb for excitation from
the Fg = 1 and Fg = 2 ground-state levels, respectively. In
this case, the detuning can dramatically affect the shape of
the signals. As can be seen by comparing Figs. 7(a) and 7(b),
the amplitude of the peak that corresponds to level crossing
β increased by more than a factor of 2 when the laser was
detuned by 36 MHz as compared to when it was detuned by
−190 MHz. Similarly, when the excitation took place from
the ground state with Fg = 2, the peak that corresponds to the
level crossing α was not clearly visible when the laser was
detuned by 36 MHz [Fig. 8(a)], but appeared when the laser
was detuned by −190 MHz [Fig. 8(b)]. The amplitude of the
peak at level crossing γ also increased depending on if the laser
was tuned to a value that closely corresponds to the energy
difference between the ground state and its level crossing
[Fig. 8(b)] or far away [Fig. 8(a)]. Note that “close”here does

not mean in magnetic-field values, but in energy difference
(see Fig. 1). Again, these peaks illustrate the power of using
a detailed model, as the resonance labeled β would not have
appeared in the theoretical calculation when exciting from
Fg = 1 without taking into account sublevel mixing.

Figure 9 shows how the theoretical model can be used
to predict the optimum laser detuning for maximizing the
signal of a level-crossing experiment at a given magnetic
field. The intensity difference is plotted against laser detuning
for excitation from the Fg = 1 ground-state hyperfine level
of 87Rb with the magnetic field fixed at B = 57 G. The
black markers connected by a line represent the results of
the calculation with a Rabi frequency of 4 MHz, which
corresponds to a laser power density of I = 2 mW/cm2.
Four experimental points are represented by filled circles and
taken from the measurements presented in the previous figures
to show that the theoretical curve is properly normalized.
The calculation indicates that the intensity difference of the
level-crossing signal can be maximized at a detuning of around
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FIG. 8. (Color online) Intensity difference (I⊥ − I‖) versus magnetic field for the Fg = 2 −→ Fe = 1,2,3 transitions of 87Rb with the laser
detuned from the 5 2S1/2(Fg = 2) −→ 5 2P3/2 transition by (a) 36 MHz and (b) by −190 MHz. Markers show the results of a measurement
with the laser power density I = 2 mW/cm2, while the solid line shows the results of a calculation with Rabi frequency 
R = 4 MHz. The
Greek letters indicate the positions of level crossings (see Fig. 1).
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FIG. 9. (Color online) Intensity difference (I⊥ − I‖) versus laser
detuning for fixed magnetic-field value (B = 57 G) for the transition
from the ground state of 87Rb with Fg = 1.

−250 MHz for this value of the magnetic field. The curve has
a half width at half maximum of around 250 MHz, which
is comparable to the Doppler width of rubidium at room
temperature. In order to optimize the experimental conditions
that maximize the amplitude of a particular level-crossing
peak, it can be useful to generate from the results of the
calculations a three-dimensional plot of the intensity difference
of the two orthogonally polarized components of the LIF as
a function of laser detuning and magnetic field. Such a plot
is shown in Fig. 10, and from it one can easily determine the
optimal laser detuning that maximizes the amplitude of each
level-crossing peak.

As is well known, the level-crossing resonances are
manifestations of coherences in the excited-state manifold of
the atoms under study. These coherences can be visualized
by plotting surfaces that represent the probability of finding
the angular momentum of an atom pointing in a particular
direction in space [21,22]. Such surfaces can be generated from
the density matrices by summing over all F states (see [23]),
which yields the spatial distribution of J . Such surfaces have
been included in Fig. 7 as an illustration of the information
that can be gleaned from the theoretical model. The axes Ix

FIG. 10. (Color online) Intensity difference (I⊥ − I‖) versus laser
detuning and magnetic field for the transition from the ground state
of 87Rb with Fg = 1. The calculations were performed for 
R =
4 MHz.

and Iy refer to the states that give rise to the respectively
polarized fluorescence when they decay. When two or more
sublevels in the excited state that could be excited coherently
(�m = ±2) are degenerate, the excited state becomes aligned,
which manifests itself as a nonuniform angular momentum
distribution in the xy plane. In other words, an aligned state
gives rise to an angular momentum distribution that has the
z axis as a second-order symmetry axis. In the absence
of coherence the angular momentum spatial distribution is
axially symmetric with respect to the z axis. Aligned states
occur when all sublevels cross at zero magnetic field and
at the level-crossing points that can be excited coherently,
such as α and β in Fig. 7. Far from the level-crossing points
the angular momentum distributions become symmetric. The
degree of asymmetry in the angular momentum distribution
also reflects the strength of the coherence of the respective
resonance and is related to the amplitude of the level-crossing
peak.

V. CONCLUSION

The results presented in this work demonstrate two things:
(1) the shapes of �m = ±2 level-crossing signals can be
theoretically modeled with good accuracy over a broad range
of magnetic-field values and from laser power densities
of 1 mW/cm2 to 16 mW/cm2, even though one would
expect nonlinear absorption above the saturation intensity of
2.5 mW/cm2; and (2) the detuning of the laser can dramatically
influence the shape of the level-crossing curve, in particular
the amplitudes of the peaks, when the hyperfine splitting
of the excited state exceeds the Doppler broadening. This
sensitivity to the laser detuning also provided a particularly
stringent test of the theoretical model, as well as being
interesting in its own right for the optimization of level-
crossing studies. Furthermore, the density matrices computed
with the theoretical model can shed light on the coherent
processes associated with the excitation of the atoms, which
is useful for computing fluorescence intensities for arbitrary
directions and polarizations. Although the atomic constants
involved in the transitions of the D2 line of rubidium are
well known, a precise model of level-crossing signals can be
necessary for extracting atomic constants in situations where
the large number of level crossings washes out individual peaks
or where the hyperfine splitting is small [24]. The utility of such
a model for the hyperfine constants A for the 7,9,10D5/2 states
of cesium from electric-field level crossings was demonstrated,
for example, in [25].
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