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The rate coefficients for capture of charged particles by dipolar polarizable symmetric top molecules
in the quantum collision regime are calculated within an axially nonadiabatic channel approach.
It uses the adiabatic approximation with respect to rotational transitions of the target within first-
order charge–dipole interaction and takes into account the gyroscopic effect that decouples the
intrinsic angular momentum from the collision axis. The results are valid for a wide range of
collision energies (from single-wave capture to the classical limit) and dipole moments (from
the Vogt–Wannier and fly-wheel to the adiabatic channel limit). © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4819062]

I. INTRODUCTION

Quantum effects in the formation of collision complexes
in molecule-molecule and molecule-ion encounters are ex-
pected to show up at low collision energies when the relative
motion of the partners bears quantum character, i.e., when the
de-Broglie length of the radial motion becomes comparable
or larger than the characteristic length of the interaction po-
tential, and when only a small number of partial waves con-
tribute to the capture cross section or the rate coefficient. Nor-
mally, under these conditions, the vibrational and rotational
quantum states of the partners during the collision will re-
main adiabatic with respect to the relative motion, such that
the adiabatic channel (AC) approximation1–7 can be used to
construct AC states which are considered as mutually uncou-
pled. Though, at low collision energy, the latter assumption
is valid for states which asymptotically are separated by not
too small energy spacing, it is not valid for states that arise
from a lifting of the degeneracy of the rotational states with
respect to the projection of the intrinsic angular momentum
onto a space-fixed axis. Nonetheless, the AC approximation
can be used, when the interfragment distances R, that are es-
sential for a particular collision dynamics, are smaller than
the so-called locking distance RL, at which the quantization
axis of the intrinsic angular momentum changes from space-
fixed to the collision-axis direction. The locking phenomenon
is well documented in the physics of atomic collisions (see,
e.g., Ref. 8), and it was discussed, for molecular collisions
and half-collisions, e.g., in the decay of molecular complexes
in Refs. 9–12. In an application to the dynamics of complex
formation, the AC approach is applicable when the charac-
teristic capture distance is noticeably smaller than RL. This is
the case when the anisotropic interfragment interaction falls
off with R faster than the Coriolis interaction (which is pro-
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portional to R−2). If the former decreases more slowly then
the capture is accompanied by non-adiabatic transitions be-
tween the AC states that leads to a complicated capture dy-
namics such as illustrated before for charge-quadrupole13 and
resonance dipole–dipole14 interactions.

In an attempt to generalize the AC approach to cases
where the Coriolis interaction is of importance, an axially
nonadiabatic channel (ANC) approach was formulated in
Refs. 15–17. Within this approach, the channel states and po-
tentials were calculated by diagonalization of the sum of the
interaction potential and the Coriolis coupling. This proce-
dure eliminates the rotational nonadiabaticity (compared to
the AC states and potentials), but it introduces an additional
coupling induced by the radial motion. The successful appli-
cation of the ANC approach is subject to certain criteria aris-
ing from the comparison of the radial and rotational coupling
within the AC approach with the radial coupling within the
ANC approach.18 In this respect, the anisotropic first-order
charge–dipole interaction between an ion and a dipolar sym-
metric top represents an interesting special case, since here
the ANC states are not coupled by the radial motion. This sub-
stantially simplifies the problem of quantum capture, reducing
it to two independent steps: the determination of ANC poten-
tials and the calculation of capture probabilities from uncou-
pled radial wave equations. The aim of the present paper is
to study such quantum effects in the capture of dipolar polar-
izable symmetric top molecules by ions within the ANC ap-
proach and bridge the gap between earlier studies of the prob-
lem in the classical AC (ACCl)19–21 and the fly-wheel (FW)22

approaches that are applicable for prevailing electrostatic or
gyroscopic interactions, respectively,

When the characteristic value of the total angular mo-
mentum of the capture event is not too large for the case
of first-order charge–dipole interaction, quantum effects in
the capture should be accompanied by noticeable rotation-
ally nonadiabatic effects.22 This is the case for tops with very
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small dipole moments such as arising when one of the atoms
in a spherical top is isotopically substituted and when in-
dividual vibrationally averaged dipole moments of different
bonds do not mutually cancel. For instance, the dipole mo-
ment of CH3D molecule in the ground vibrational state is
about 10−3D23–26 which suggests the existence of different
capture regimes.22 Here we extend this study and consider
three different collision regimes, ultra-low (UL), low (L), and
medium (M) energies (or temperatures), all of them falling
into a range where the adiabatic approximation for rotational
transitions is applicable. Still higher energies, where the adi-
abatic approximation and the weak-field approximation for
the charge–dipole interaction break down, are not discussed
here; these were considered earlier for classical relative
motion.27

The plan of the present paper is the following. In Sec. II,
ANC potentials are defined for a system ion + dipolar po-
larizable symmetric top, and the hierarchy of approximations
is elaborated. Section III presents the capture equations and
defines capture probabilities and energy-dependent rate coef-
ficients. Section IV is devoted to ANC rate coefficients at UL
energies. Section V bridges the gap between UL and M en-
ergies. Section VI concludes the paper. Paper II36 of this se-
ries discusses energy- and temperature- dependent rate coef-
ficients for an extended set of parameters and, as a case study,
considers the capture of CH3D by various ions.

II. HIERARCHY OF CHANNEL POTENTIALS

Following earlier work on the collision of ions and dipo-
lar polarizable symmetric top molecules,19–21 we consider the
regime where the angular momentum of the top j and its pro-
jection k onto its symmetry axis are good quantum numbers,
i.e., the “weak-field limit”19 where the adiabatic criterion for
the coupling between non-degenerate molecular states is au-
tomatically fulfilled.20 In this case, the Hamiltonian of the col-
lision pair, written in the total angular momentum representa-
tion (quantum number J), is diagonal in the quantum numbers
J, j and reads

Ĥ = T̂R + V̂ ,

V̂ = Ĥrot + Ĥcd + Ĥcind.
(2.1)

Here, T̂R is the kinetic energy of the relative radial motion and
V̂ is the effective potential energy that includes the Hamilto-
nian of the relative rotation Ĥrot, the first-order charge–dipole
interaction Ĥcd, and the charge–induced dipole interaction
Ĥcind:

Ĥrot = (Ĵ − ĵ)2

2μR2
, Ĥcd = qμDkĵR

j (j + 1)R3
, Ĥcind = −q2α

2R4
,

(2.2)
where R denotes the distance between the ion and the neu-
tral, μ is the reduced mass of the collision pair, q is charge
of the ion, μD is the dipole moment of the top, and α is the
polarizability of the neutral molecule. Since j and k are con-
served quantities, it appears practical to employ the quantity
μ̄D = μDk/

√
j (j + 1), i.e., the projection of the molecular

dipole moment onto the symmetry axis of the top in a j, k
rotational state. We also note that second-order effects in the

charge–dipole interaction, arising from small admixtures of
other rotational states to the j, k state, can be taken into ac-
count by renormalization of the polarizability, making it j, k
dependent.18–21 However, here we will not dwell on this point.

In what follows, it is convenient to use the scaled, re-
duced, variables δ for the dipole moment, ρ for the interfrag-
ment separation, υ for the potentials, ε for the energy, and κ

for the wave vector. These quantities are explicitly defined as

δ = qμμ̄D/¯2,

ρ = R/RL with RL = q
√

μα/¯,

υ = V/EL with EL = ¯2/μR2
L = ¯4/μ2q2α,

ε = E/EL = κ2/2.

(2.3)

In this way, the J, j block of the operator υ̂, υ̂(J,j ), can be
written as

υ̂(J,j )(ρ, δ) = Ĉ(J,j )(δ)

2ρ2
− 1

2ρ4
, (2.4)

with the operator, Ĉ(J,j )(δ) given by

Ĉ(J,j )(δ) = (Ĵ − ĵ)2 + 2δĵρ/ρ
√

j (j + 1). (2.5)

If ρ is chosen as the quantization axis for j, the matrix
C(J, j)in the (J, j, m) representation, with m being the quantum
number of projection of j onto the collision axis, reads

C(J.j )
m,m (δ) = (J (J + 1) − 2m2 + j (j + 1)) + 2δm/

√
j (j + 1)

C
(J,j )
m,m+1 = C

(J,j )
m+1,m

=
√

J (J + 1) − m(m + 1)
√

j (j + 1) − m(m + 1).

(2.6)

The dimensionality of the matrix C(J, j) is 2min (J, j) + 1, and
its eigenvalues ANCc

(J,j )
n (δ) can be specified, in increasing or-

der, by a set n of numbers increasing from −min {J, j} up to
min {J, j}. Written in terms of eigenvalues ANCc

(J,j )
n (δ), the

matrix υ̂(J,j ) becomes diagonal with the elements

υ(J,j )
n (ρ, δ) =

ANCc
(J,j )
n

2ρ2
− 1

2ρ4
. (2.7)

Negative eigenvalues ANCc
(J,j )
n (δ) correspond to attrac-

tive ANC potentials while positive values are asymptotically
repulsive potentials. If the parameter δ in the matrix C(J, j) is
replaced by −δ (which corresponds to a change of the sign of
k), the set of eigenvalues will be the same, and with a proper
combination of the eigenvectors for δ and −δ one gets eigen-
functions that are specified by |δ| and possess total parity P
with respect to inversion of ρ and the state of the top. In the
adopted approximation, when K-doubling effects are ignored,
an ANC state corresponding to a certain value ANCc

(J,j )
n (δ) can

be regarded as doubly degenerate with respect to the parity
quantum numbers.

There exists a hierarchy of approximations which allows
one to represent the quantities ANCc

(J,j )
n (δ) analytically and

check these approximations by comparison with numerical
results:
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(i) The FW approximation: small δ, δ � 1, arbitrary J, j.
The eigenvalues ANCc

(J,j )
n (δ) can be calculated by per-

turbation approach in the (J, j, �) representation with
respect to δ as

ANCc(J,j )
n (δ)

∣∣
δ�1 →FW c

(J,j )
� (δ)

= �(� + 1) + O(δ2) + ..... (2.8)

Here, � is the quantum number of the relative angular
momentum with |J − j| ≤ � ≤ J + j. For the special
case J = j = −n (i.e., for � = 0), a series representa-
tion of FWc

(j,j )
� (δ) up to fourth order was developed in

Ref. 22. It indicated an only very weak dependence of
FWc

(j,j )
� (δ) on j.

(ii) The adiabatic channel (AC) approximation: large δ, δ

� Jj, arbitrary J, j. The eigenvalues ANCc
(J,j )
n (δ) are

identified with the diagonal elements of the matrix C(J, j)

yielding

ANCc(J,j )
n (δ)

∣∣
δ�Jj

→ ACc(J.j )
n (δ)

= J (J + 1) − 2n2 + j (j + 1) + 2δn/
√

j (j + 1).

(2.9)

The FW limit at δ → 0 and the AC limit at δ � Jj can be
used for constructing linear correlation diagrams for the
ANCc

(J,j )
n (δ) (i.e., the two limits connected by a straight

line) obeying the non-crossing rule. As an example,
Fig. 1 compares linear correlations (dashed green lines)
with accurate ANC potentials (full red lines) for j = 1,
J = 3.

(iii) The semiclassical ANC (ANCSC) approximation: ar-
bitrary δ, J � j. One neglects j(j + 1) compared to
J(J + 1) and approximates Ĉ(J,j )(δ) by SCĈ(J,j )(δ) with

SCĈ(J,j )(δ) = Ĵ2 − 2Ĵĵ + 2δĵρ/ρ
√

j (j + 1). (2.10)

FIG. 1. Coefficients of channel potentials, see Eq. (2.7). Comparison of re-
sults for j = 1, J = 3 in the FW-AC linear correlation diagram FW−ACc

(3,1)
n (δ)

(dashed green lines), ANCSC approximation ANCSCc
(3,1)
n (δ) (dotted blue

lines), and ANC accurate results ANCc
(3,1)
n (δ) (full red lines); n = −1, 0, 1

in upward direction, δ = scaled dipole moments of Eq. (2.3)).

In addition, one considers Ĵ as a classical vector which
is approximately normal to ρ, and one chooses the
quantization axis of ĵ to coincide with the vector J
+ 2δρ/R

√
j (j + 1). Keeping the same nomenclature

for the projection of j onto the new quantization axis,
the matrix SCC(J,j ) becomes diagonal in this representa-
tion. Finally, replacing J(J + 1) by its WKB counterpart
(J + 1 / 2)2, one gets

ANCc(J,j )
n (δ)

∣∣
J�j

→ ANCSCc(J,j )
n (δ) = (J + 1/2)2

+ n
√

(2J + 1)2 + 4δ2/j (j + 1). (2.11)

Fig. 1 illustrates the performance of the ANCSC ap-
proximation for J = 3, j = 1when the condition J � j
is nearly satisfied (dotted blue lines).

(iv) The AC classical (ACCl) approximation: large δ, δ �
Jj, arbitrary j, J � j, 1. Here, in Eq. (2.9) for ACc

(J,j )
n (δ),

one assumes J � j, neglects n2 and j(j + 1) against J2

and replaces J(J + 1) by (J + 1 / 2)2. This yields

ANCc(J,j )
n (δ)

∣∣
δ�Jj,J�j

→ ACClc(J,j )
n (δ)

= (J + 1/2)2

+2δn/
√

j (j + 1). (2.12)

This is the standard expression of the ACCl approxima-
tion which was used in earlier work for calculating cap-
ture rate coefficients at moderate collision energies.19–21

(v) We finally note that, for j = 1 and j = 2, the functions
δ(c(J,1)

n ) that are inverse to c(J,1)
n (δ), can be calculated

analytically. In particular, for j = 1, the result reads

δ =
∣∣J (J + 1) − c(J,1)

n

∣∣
√

2

×
√

1−4
J (J + 1)(

J (J +1)−c
(J,1)
n

)(
J (J +1) + 2− c

(J,1)
n

) ,

(2.13)

where n assumes the values n = −1, 0, and1 (see Sec. IV).

III. CAPTURE EQUATIONS, CROSS SECTIONS,
AND RATE COEFFICIENTS

Since the diagonalization of the C(J, j) matrix removes the
rotational (Coriolis) coupling, and since this diagonalization
is performed by an ρ-independent transformation, the ANC
potentials of Eq. (2.7) play the part of ordinary central poten-
tials, i.e., the multi-state Hamiltonian of Eq. (2.4) becomes a
set of single-state Hamiltonians with the ANC potentials{

− ∂2

2∂ρ2
+ υ(J,j )

n (ρ, δ)

}
ψ (J,j )

n (ρ, κ) = εψ (J,j )
n (ρ, κ),

(3.1)
where ε and κ are from Eq. (2.3). The solutions of
Eq. (3.1), with appropriate capture boundary conditions,21

determine the capture probabilities P
(J,j )
n (κ, δ). These are
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recovered from the capture probability P(κ , c) calculated for
a Hamiltonian η̂(ρ, c),

η̂(ρ, c) = − d2

2dρ2
+ υ(ρ, c),

υ(ρ, c) = c

2ρ2
− 1

2ρ4
,

(3.2)

as

P (J,j )
n (κ, δ) = P (κ, c)

∣∣
c=c

(J,j )
n (δ). (3.3)

For c > 0, the potential υ(ρ, c)in Eq. (3.2) reaches its
maximum υmax (c) = c2/8 at an energy εc corresponding to κc

= c/2. For c < 0, the potential is purely attractive.
Equation (3.2) can be solved with Mathieu functions.28–31

However, in the following we adhere to numerical solutions
which either are directly put into the expressions for the rate
coefficients or provide the basis for relatively simple analyti-
cal fitting formulae (see Sec. V).

The probabilitiesP (J,j )
n (κ, δ) determine the total cumula-

tive capture probability �(j)(κ , δ),

�(j )(κ, δ) =
∑
J,n

2J + 1

2j + 1
ANCP (J,j )

n (κ, δ), (3.4)

and the total rate coefficients. The latter, scaled rela-
tive to the energy-independent Langevin rate coefficient
kLang = 2πq

√
α/μ, are

ANCχ (j ) (κ, δ) = 1

2κ

ANC

�(j ) (κ, δ) . (3.5)

The ANCSC and AC counterparts of Eqs. (3.4) and (3.5) are
obtained from these equations when the ANC probabilities in
Eq. (3.4) are replaced by AC and ANCSC probabilities. The
ACCl counterpart is obtained from Eq. (3.5) when the prob-
abilities are expressed by steps of the energy at the barriers
of the effective potentials in the Hamiltonian in Eq. (3.3) and
when the summation over J is replaced by an integration (see
Sec. IV for more details).

ANC thermal capture rate coefficients are obtained
by averaging of the energy-dependent capture rate co-
efficients. The averaged scaled capture rate coefficient,
averaged scaled capture rate coefficient ANCχ̄ (j ) (θ, δ), are ex-
pressed as a function of the scaled temperature θ = kBT/EL

where EL is defined by Eq. (2.3) (see Paper II36).

IV. QUANTUM ANC CAPTURE AT
ULTRA-LOW ENERGIES

The regime of UL collision energies is defined by the
condition that, in the absence of a charge–dipole interaction,
the rate coefficient is dominated by s-wave capture. Quantita-
tively, we define this region by the condition κ < 0.1 which
corresponds to collision energies below the classical barrier
height c2

UL/8 of the potential in Eq. (3.2) and cUL = 0.2
(we note that this value of c is an order of magnitude lower
than the respective value for p-wave capture, cp = 2). Indeed,
Fig. 1 of Ref. 32 shows that the probability of p-wave capture
at κ = 0.1 is about two orders of magnitude smaller than that
for s-wave capture.

For not too small values of δ, we expect that rate coef-
ficients at UL energies will be determined by the long-range
part of the interaction potential only and, therefore, will not
be too different from that for pure charge–dipole (CD) inter-
action. We, therefore, first consider, capture for pure CD in-
teraction. For this case, an attractive interaction corresponds
to c

(J,j )
n (δ) < 0 which is possible only for negative values of

n. The capture probabilities in this case are step functions �

of the coefficients c
(J,j )
n (δ) where the step corresponding to

the opening of the capture channel at c
(J,j )
n (δ) = −1/4 deter-

mines the onset of capture for a pure R−2 attraction (see Sec.
35 of Ref. 33). Thus we have

ANCCDχ (j )(κ, δ) = 1

2κ

ANCCDN (j )(δ),

ANCCDN (j )(δ) =
∑
J,n

2J + 1

2j + 1
�

(−1/4 − c(J,j )
n (δ)

)
,

(4.1)

where ANCCDN(j)(δ) is the mean ANC number of open
CD channels. The steps ANCCDN(j)(δ) increase by
(2J + 1) / (2j + 1) each time when δ passes a threshold
value ANCδ

(J,j )
n . The latter are found from the equation,

ANCc(J,j )
n (δ)|

δ=ANCδ
(J,j )
n

= −1/4, (4.2)

which has a solution only for negative n. The values of
ANCδ

(J,j )
n are listed in Table I for (J, j, n) triads which are

of interest for capture at UL energies. The ACCD counter-
part of ANCCDN(j)(δ), i.e., ACCDN(j)(δ), is obtained when the
ANCδ

(J,j )
n in Eq. (4.1) are replaced by ACδ

(J,j )
n from the equiv-

alent of Eq. (4.2). The values of ACδ
(J,j )
n are found analytically

from Eq. (2.9). The comparison of ANCδ
(J,j )
n with ACδ

(J,j )
n (see

Table I) demonstrates the importance of the gyroscopic

TABLE I. Threshold values ANCδ
(J,j )
n (upper lines) and ACδ

(J,j )
n (lower lines) for j = 1, 2, and 3 and J = 1, 2, 3,

and 4. The first thresholds ANCδ
(j,j )
−j and ACδ

(j,j )
−j are in bold.

j n J = 1 ANC, AC J = 2 ANC, AC J = 3 ANC, AC J = 4 ANC, AC

1 −1 0.643, 1.59 3.23, 4.42 7.38, 8.66 13.00, 14.32

2 −1 5.60, 7.65 9.88, 12.55 17.09, 19.90 26.90, 29.70
−2 None 0.641, 2.60 3.34, 6.28 7.66, 11.18

3 −1 18.07, 21.22 24.17, 28.15 34.18, 38.54 47.95, 52.40
−2 None 4.72, 8.88 8.49, 14.07 14.72, 21.00
−3 None None 0.640, 3.61 3.42, 8.23
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FIG. 2. Total number ANCCDN (j )(δ) of ANCCD (red full line), ACCDN (j )(δ)
of ACCD (green dashed line), and ACClCDN (j )(δ) of ACClCD (dotted blue
line) capture states for j = 1. (In this case there is only one capture state for
each J with n = −1; the given numbers are maximum values of contributing
J; δ = scaled dipole moments of Eq. (2.3).)

effect for δ being between ANCδ
(J,j )
n and ACδ

(J,j )
n . Finally,

ACClCDχ (j)(κ , δ) and ACClCDN(j)(δ) are calculated from Eq.
(4.1) when the ANCδ

(J,j )
n are replaced by ACClδ

(J,j )
n and the

summation by an integration,

ACClCDχ (j )(κ, δ) = 1

2κ

ACClCDN (j )(δ),

ACClCDN (j )(δ) = δ

√
j (j + 1)

(2j + 1)
.

(4.3)

Fig. 2 illustrates the relation between ANCCDN(j)(δ),
ACCDN(j)(δ), and ACClCDN (j )(δ) for j = 1. Here exists only one
contribution with n = −1, and ANCCDN(1)(δ) is a function with
regular steps of progressively increasing length.

For j = 2, there are two contributions with n = −2
and n = −1, and ANCCDN(2)(δ) is the sum of them. As a re-
sult, ANCCDN(2)(δ) has the shape of a slightly irregular step
function. For j = 3, i.e., for ANCCDN(3)(δ), the irregularity in
ANCCDN(3)(δ) increases further since there are three contribu-
tions from n = −3, n = −2, and n = −1. These patterns are
summarized in Fig. 3 for j = 1, 2, and 3 and they are illus-
trated by the ratios of capture rate coefficients,

ANCCDS(j )(δ) =
ANCCDχ

(j )
app(κ, δ)

ACClCDχ (j )(κ, δ)
=

ANCCDN (j )(δ)
ACClCDN (j )(δ)

. (4.4)

The peaks of the plots ANCCDS(j)(δ) correspond
to the threshold values ANCδ

(J,j )
n which, in in-

creasing order, are ANCδ
(1,1)
−1 ≈ ANCδ

(2,2)
−2 ≈ ANCδ

(3,3)
−3 ,

ANCδ
(2,1)
−1 , ANCδ

(3,2)
−2 , ANCδ

(4,3)
−3 , ANCδ

(4,3)
−2 , ANCδ

(3,2)
−1 , ANCδ

(3,1)
−1 ,

ANCδ
(4,2)
−2 , ANCδ

(5,3)
−3 , ANCδ

(6,3)
−3 . With increasing δ, the saw-

tooth shaped ratios ANCCDN (j )(δ)/ACClCDN (j )(δ) with jumps
at δ = ANC

t δ
(J,j )
n converge to unity. Since the increments of

ANCCDN (j )(δ) at each large step are proportional to
√

δ, and
since ACClCDN(j)(δ) increases linearly with δ, the individual
deviations of the ratio ANCCDN (j )(δ)/ACClCDN (j )(δ) from

FIG. 3. Dependence of the ratio ANCCDN (j )(δ)/ACClCDN (j�1)(δ) on δ for j
= 1 (red full line), j = 2 (blue dashed line), j = 3 (green dotted line), see
Fig. 2.

unity decrease as 1/
√

δ, i.e., relatively slowly. The plots of
ANCCDS(j)(δ) show that, for some values of δ, to the right from
ANCδ

(J,j )
n , the ratio ANCCDS(j)(δ), in its decreasing parts, be-

comes equal to unity (i.e., the ANCCDN(j)(δ) become equal or
close to ANCCDN(j � 1)(δ)). We call these values the reference
values Rδ

(J,j )
n . The set of ANCδ

(J,j )
n and Rδ

(J,j )
n qualitatively

characterize the δ dependence of ANCCDS(j)(δ).
Passing to the general case (charge–dipole + charge

–induced dipole interactions), we suggest an approximation
to the case when several capture channels are open in the UL
energy region. Explicitly, we accept the following expression
for the approximate rate coefficient (denoted by ANCULχ (j)(κ ,
δ)) which includes contributions only from ANCc

(J,j )
n (δ) with

n < 0 and uses approximate capture probabilities P
(J,j )
n,app(κ, δ)

instead of the accurate P
(J,j )
n (κ, δ):

ANCULχ (j )(κ, δ) ≈ ANCULχ (j )
app(κ, δ) = 1

2κ

ANCUL�(j )
app(κ, δ),

ANCUL�(j )
app(κ, δ) =

∑
J,n

2J + 1

2j + 1
ANCP (J,j )

n,app(κ, δ). (4.5)

The validity of this approximation is determined by the
condition that the partial contributions from terms with
ANCc

(J,j )
n (δ) > cUL in the general expression of Eq. (3.4) are

negligible compared to UL rate coefficients, and the approx-
imate probabilities P

(J,j )
n,app(κ, δ) well reproduce the accurate

probabilities P
(J,j )
n (κ, δ) in the regions which are essential for

the sum in Eq. (4.5).
The approximation of P

(J,j )
n (κ, δ) by P

(J,j )
n,app(κ, δ) relies on

the behavior of P(κ , c) at small κ which shows a steep drop
as a function of c in the range −1 < c < 1, see Fig. 4.

Interestingly, capture channels for charge–dipole
+ charge–induced dipole interaction at very small κ open
up at larger negative c than for pure CD interaction, where
c = −1/4 (vertical line in Fig. 4). This is related to the
reflection of the waves above the drop of the −1/ρ4 potential.
The desired approximate expression for the probabilities
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FIG. 4. Capture probabilities P(κ , c) over the range −1 < c < 1 (κ = scaled
wave vector from Eq. (2.3), c = scaled potential parameter from Eq. (3.2)).

ANCP
(J,j )
n,app(κ, δ) is obtained in two steps: the first replaces

P(κ , c) by Papp(κ , c), and the second replaces ANCc
(J,j )
n (δ) by

ANCc
(J,j )
n,app(δ), i.e.,

ANCP (J,j )
n,app(κ, δ) = Papp(κ, c)

∣∣
c=ANCc

(J,j )
n,app(δ). (4.6)

Our approximation for Papp(κ , c) is based on the fitting of
numerical probabilities P(κ , c) in terms of sigmoid functions
of the form

Papp(κ, c) = 1

1 + exp[αc(c − c1/2)]
. (4.7)

Here, c1 / 2 = c1 / 2(κ) fixes the center of the sigmoid
that corresponds to Papp(κ, c)|c1/2=c1/2(κ) = 1/2, and αc(κ)
= α>(κ)orα<(κ) characterizes the half-width of the sigmoid
for c > c1 / 2 and c < c1 / 2, respectively. The fitted functions
c1 / 2(κ) and αc(κ), expressed through the auxiliary variable
ξ = lg

(
103κ

)
, have the form

c1/2(κ) = −0.323 − 0.014ξ + exp(−7.5 + 3.25ξ − 0.165ξ 2),

α(κ) =
[

α<(κ), c < c1/2(κ)
α>(κ), c > c1/2(κ)

,

(4.8)
α<(κ) = 6.35ξ 2 − 27.15ξ + 34,

α>(κ) = 1.8ξ 2 − 12ξ + 21.

For c > −1/4, an analytical expression for P(κ , c) at small κ

and under the condition P(κ , c) � 1 was derived by Fabrikant
and Hotop.34 Our numerical results agree well with their find-
ings, but we abandon this result in order to arrive at a more
global expression in the form of Eqs. (4.6) and (4.7) which
describes the transition from large to small capture probabili-
ties when c passes through the value −1/4. For c significantly
different from −1/4, the approximation of Eq. (4.7) becomes
inadequate, but this does not noticeably affect the partial rate
coefficients since the ANCP

(J,j )
n,app(κ, δ) become either negligibly

small or flatten off to their asymptotic values of unity.
Our approximation of ANCc

(J,j )
n (δ) by ANCc

(J,j )
n,app(δ) is

based on a fitting of the numerical eigenvalues of the C(J, j)

TABLE II. Expansion coefficients ANCa
(J,j )
n (upper lines) and ACa

(J,j )
n

(lower lines) for j = 1, 2, and 3 and J = 1, 2, 3, and 4 in Eqs. (5.7) and
(5.8).

j n J = 1 J = 2 J = 3 J = 4

1 −1 −0.712 −1.096 −1.228 −1.293
−1.414 −1.414 −1.414 −1.414

2 −1 −0.633 −0.643 −0.697 −0.735
−0.816 −0.816 −0.816 −0.816

−2 None −0.720 −1.098 −1.252
−1.633 −1.633 −1.633

3 −1 −0.500 −0.493 −0.504 −0.522
−0.577 −0.577 −0.577 −0.577

−2 None −0.777 −0.776 −0.856
−1.155 −1.155 −1.155

−3 None None −0.721 −1.082
−1.732 −1.732

matrices in certain regions of δ. With coefficients a
(J,j )
n such

as given in Table II, for the same triads (J, j, n) as in Table I,
we write

ANCc(J,j )
n,app(δ) = −1/4 + ANCa(J,j )

n

(
ANCδ(J,j )

n − δ
)
, (4.9)

for all (J, j, n) triads except for (j, j, −j). For the latter, that cor-
responds to the minimal value of ANCδ

(J,j )
n , the approximation

reads:

ANCc
(j,j )
−j,app(δ)

= −1/4 + a
(j,j )
−j

(
ANCδ

(j,j )
−j − δ

) + 1/4 − a
(j,j )
−j

ANCδ
(J,j )
n(

ANCδ
(j,j )
−j

)2

×(
ANCδ

(j,j )
−j − δ

)2
. (4.10)

Also listed in Table II are J-independent coefficients
ACa

(J,j )
n = 2n/

√
j (j + 1) which noticeably deviate from

ANCa
(J,j )
n , though the latter converge slowly to the former

(for J noticeably exceeding j). The linear approximation near
ANCδ

(J,j )
n in Eq. (4.9) breaks down for those δ which strongly

deviate from the threshold values ANCδ
(J,j )
n . However, this

does not noticeably affect the partial rate coefficients since
ANCP

(J,j )
n,app(κ, c)|

c=c
(J,j )
n,app(δ) becomes either negligibly small or

flattens off to its asymptotic values of unity for increasing
values of |ANCδ

(J,j )
n − δ|. The linear term in Eq. (4.10) is sup-

plemented by a quadratic term which insures the correct limit
at δ → 0. This is necessary since the value ANCc

(J,j )
n (δ)δ=0

= 0 falls into the UL energy range. We note, however, that
the approximation of Eq. (4.10), intended to provide the
optimum approximation to ANCc

(j,j )
−j, (δ) near the threshold

δ = ANCδ
(j,j )
−j , is slightly different from the approximation of

Eq. (2.9) near δ = 0. In this way, Eqs. (4.9) and (4.10) as well
as Tables I and II summarize the results of the diagonaliza-
tion of the ANC matrices which are needed in the UL energy
region.

Passing to the ANCUL rate coefficients we note that, for
δ below and of the order of unity, only one term in the sum
of Eq. (4.4) with J = j = −n survives. Then, ANCULχ

(j )
app(κ, δ)
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assumes the form

ANCULχ (j )
app(κ, δ) = 1

2κ
Papp

(
κ, ANCc

(j,j )
−j,app(δ)

)
, (4.11)

where c
(j,j )
−j,app(δ) is defined by Eq. (4.10). A more accurate

expression for ANCULχ
(j )
app(κ, δ), in the limit of very small δ, in

the framework of the FW approach was given in Ref. 22. In
particular, for δ � 1 and κ → 0, the FW rate coefficients read:

FWχ (j )(κ, δ)|δ�1,κ→0 = 2(κ/4)−4δ2/3. (4.12)

The expression of Eq. (4.11) at δ → 0 yields the Vogt-
Wannier (VW) limit .FWχ (j)(κ , δ)|δ = 0, κ → 0 = VWχ = 2,
though, for non-zero δ, it diverges for κ → 0. It was argued
in Ref. 22 that the condition δ � 1, inherent in the FW
approximation, can be relaxed, since, for δ → 1, the FW
capture probability approaches its maximum value, thus
being quite insensitive to the actual value of c. Indeed, Fig. 4
shows that the maximum is achieved with an accuracy of 5%
at c = −0.5 for κ = 0.01 and at c = −0.7 for κ = 0.1. These
results confirm that the quadratic approximation c = 2δ2/3
can be used for an approximate calculation of FWP(κ , δ) when
FWP(κ , δ) approaches its maximal value of FW

maxχ (κ) = 1/2κ .
For larger δ, several terms in the sum in Eq. (3.4) may

contribute, with larger values of J explicitly containing the
capture probability while the others will be at their uni-
tary limit. When there is only a single such term, then the
ANCULχ

(j )
app(κ, δ) can be expressed as

ANCULχ (j )
app(κ, δ)

= 1

2κ

{
ANCCDN (j )(δ) + 2Jm + 1

2j + 1
ANCPapp(κ, c(Jm,j )

nm,app(δ)

}
.

(4.13)

Here, ANCCDN(j)(δ) is the number of ANCCD open channels
with the maximum quantum number Jm − 1, while Jm = Jm(δ)
and nm = nm(δ) are determined from the equation

δ(Jm,j )
nm

= max{δ(J,j )
n }∣∣

δ
(J,j )
n <δ

. (4.14)

If Jm(δ) = j, then ANCCDN(j)(δ) = 0, and Eq. (4.13) reduces to
Eq. (4.10). The form of Eq. (4.13) suggests that, for a fixed en-
ergy, the dependence of the capture cross section on δ is rep-
resented by a series of steps connected by sigmoid joints. The
joints are quite steep for very low κ , but become broader with
increasing κ . This is a manifestation of the charge–induced
dipole interaction in the capture dynamics. It can be charac-
terized by generalizing the ratio of Eq. (4.4) as

ANCULS(j )(κ, δ) =
ANCULχ (j )(κ, δ)
ACClCDχ (j )(κ, δ)

=
ANCUL�(j )(κ, δ)

ACClCDN (j )(δ)
.

(4.15)
More details of the given approach can be illustrated for
the case j = 1. Here, the quantities ANCδ

(J,1)
−1 and a

(J,1)
−1

= (dδ/dc)−1 at c = −1/4 that enter into Eqs. (4.8) and (4.9)
are calculated analytically from Eq. (2.13). In particular, the
threshold values ANCδ

(J,1)
−1 are

ANCδ
(J,1)
−1 = (J + 1/2)√

2

√
1 − 4J (J + 1)

(J + 1/2)2
(
(J + 1/2)2 + 2

) ,

(4.16)

FIG. 5. Coefficients of channel potentials ANCc
(J,j )
n (δ), see Eq. (2.7), for j

= 1, n = −1, and J = 1, 2, and 3 (red full lines) that contribute to the rate co-
efficients at UL energies (the crossings of ANCc

(J,1)
−1 (δ) with the blue dashed

line ANCc
(J,1)
−1 = −1/4 correspond to the opening of capture channels for pure

CD interaction; the green dotted lines correspond to the analytical fitting by
Eqs. (4.9) and (4.10), the dashed brown line to the second-order approxima-
tion for FWc

(1,1)
0 (δ) in Eq. (2.8)).

yielding the first threshold as ANCδ
(1,1)
−1 = 45/4

√
306

≈ 0.643. Plots of ANCδ
(J,1)
−1 for J = 1, 2, and 3 within the

UL energy range (c < 0.2) are shown in Fig. 5 (full lines),
together with the approximations from Eqs. (4.9) and (4.10)
(dotted green lines). The latter, for not too small values of
δ, perform noticeably better than the second-order approx-
imation for FWc

(1,1)
0 (δ) = 2δ2/3 in Eq. (2.8) (dashed brown

line).
At least up to δ = 2.5, the contribution from the channel

J = 2 is negligible compared to that from the leading channel
J = 1, i.e., a single-term approximation for ANCULχ (1)

app(κ, δ)
in Eq. (4.10) is valid for δ < 2.5. This substantiates the sug-
gestion from Ref. 22 that, for δ < 2, one can safely use the
one-channel approximation for UL conditions.

Fig. 6 compares plots of the ratios ANCULS(1)(κ , δ) over
the range 0.4 < δ < 6 (dotted-dashed, dashed, and dotted lines
for different values of κ , κ = 0.1, 0.01, and 0.001) with the
plot of ANCCDS(1)(δ) (full line). This region of δ accommodates
two threshold values ANCδ

(1,1)
−1 and ANCδ

(2,1)
−1 (corresponding to

abrupt jumps of the CD curve), as well as two reference values
Rδ

(1,1)
−1 and Rδ

(2,1)
−1 (corresponding to the roots of the equation

ANCCDS(1)(δ) = 1).
One sees the noticeable shifts of the maxima of the sig-

moids ANCULS(1)(κ , δ) with respect to the CD threshold posi-
tions δ = ANCδ

(J,1)
1 , (J = 1 and 2), and the approximate ful-

fillment of the relation ANCULS(1)(κ, Rδ
(J,1)
−1 ) = 1 (J = 1 and

2). The former feature is a direct consequence of the sigmoid
shape of P(κ , c) in Fig. 4, while the latter will be discussed
in Sec. V. Finally we note that plots of ANCULS(1)(κ , δ) for δ

< 0.4 can be constructed by replacing ANCULχ (j)(κ , δ) by
χFW(κ , δ), with the latter given by analytical expressions and
Fig. 1 of Ref. 22.
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FIG. 6. Ratios ANCUL�(j )(κ, δ)/ACClCDN (j�1)(δ) for j = 1 at κ = 0.001
(blue dots), κ = 0.01((red dashed line), and κ = 0.1 (green
dashed-dotted line), see text. The full red line corresponds to
ANCCDN (j )(δ)/ACClCDN (j�1)(δ). Marked are the threshold and refer-
ence values of the scaled dipole moment δ.

V. BRIDGING THE GAP BETWEEN ULTRA-LOW AND
MEDIUM ENERGIES

In the regime of medium (M) collision energies and tem-
peratures, in the absence of the charge–dipole interaction, the
rate coefficient is determined by many capture waves. The
bridging between the UL and M limits then requires accurate
calculations of J, j, n-specific contributions to Eqs. (3.4) and
(3.5). In this section we discuss this bridging for a specific
choice of the parameter δ for which the UL regime can be de-
scribed in simple ways. These correspond to small values of δ

when ANCχ (j)(κ , δ) can be calculated within the FW approach,
and to large δ from the reference set when ANCχ (j)(κ , δ) are
close to ACCIχ (j)(κ , δ), i.e., to ACCl rate coefficients extrapo-
lated to small κ beyond the formal validity limit. The general
low-energy case will be treated in Paper II36 of this series.

The ACCl expression for ACCIχ (j)(κ , δ) is well-
known,19–21 and here we use it in a form appropriate for our
discussion as formulated in Ref. 22. Explicitly, the ACCl rate
coefficient for capture of rotationally unpolarized symmetric
top rotors with rotational quantum number j and effective re-
duced dipole moment δ reads

ACClχ (j )(κ, δ) = 1

(2j + 1)

n=j∑
n=−j

(
1 + nδ

κ
√

j (j + 1)

)

×�

(
1 + nδ

κ
√

j (j + 1)

)
. (5.1)

For j � 1, Eq. (5.1) becomes

ACClχ (j�1)(κ, δ) = 1 +
(

−1

2
+ κ

4δ
+ δ

4κ

)
�(1 − κ/δ),

(5.2)
where �(x) denotes the step function of x. For κ < δ, the con-
secutive opening of capture channels produces slight undula-

FIG. 7. Scaled rate coefficients ANCχ (j)(κ , δ), for j = 1 and for small val-
ues of the scaled dipole moment δ, see Eq. (2.3) (δ = 0.05(full red line),
δ = 0.125(dashed blue line), δ = 0.25(dotted green line), κ = scaled wave
vector from Eq. (2.3)).

tions of ACClχ (j)(κ , δ) in its dependence on κ , where charge–
dipole and charge–induced dipole interactions unevenly con-
tribute to the capture. The undulations disappear for large j
as given by Eq. (5.2). The significance of undulations can be
judged from the ratio of ACClχ (j)(κ , δ)/ACClχ (j � 1)(κ , δ), as
given by Eqs. (5.1) and (5.2): the maximum deviation from
unity occurs for j = 1 and amounts to about 6%.

The ANC expression ACCIχ (j)(κ , δ) for small δ and κ is
given by the FW expression from Ref. 22 or from Eq. (4.11).
It can be extrapolated to larger κ by generalizing the approxi-
mation suggested in Ref. 27 for capture in the case of charge–
induced dipole interaction. Explicitly, it reads

ANCχ (j )
app(κ, δ)

∣∣
δ<1 = max{FWχs(κ, δ), ACχ (j )(κ, δ)}. (5.3)

For j = 1, plots of ANCχ (1)(κ , δ) are shown in Fig. 7.
For δ = 0.05, at small κ one sees the convergence of

ANCχ (1)(κ , δ) to the Vogt-Wannier limit VWχ (j) = 2, indicating
a virtually complete quenching of the charge–dipole interac-
tion by Coriolis coupling. The slight overshoot of the VW
limit, seen at κ = 10−3, indicates, however, that at still lower
energies the rate coefficient diverges as required by the thresh-
old behavior for the FW limit, see Eq. (4.12). For higher δ

(but still δ � 1), the rate coefficients are larger due to the in-
creased coupling of j to R, and their divergence for κ → 0
is clearly seen. For large κ , the rate coefficients oscillate with
diminishing amplitude about the Langevin limit χ = 1. This
feature is due to the consecutive opening of new capture can-
nels specified by J. However, at κ = δ/

√
2 one does not see

any feature which could be related to the classical opening of
a charge–dipole capture channel in ACClχ (1).

The comparison between ANC and ACCl rate coef-
ficients for large δ is facilitated by the observation that
the ANCUL and ACCl rates extrapolated to UL limit,
i.e.,ACClULχ (j)(κ , δ) = .ACClχ (j)(κ , δ)|κ � δ = ACClCDN(j)(δ)/2κ ,
become nearly equal to each other for the reference set of δ,



084311-9 Auzinsh et al. J. Chem. Phys. 139, 084311 (2013)

FIG. 8. Total and partial rate coefficients for j = 1 and δ = Rδ
(1,1)
−1 = 2.12

(the full lines give ANCχ (1)(ε, Rδ
(1,1)
−1 )(red) and ACClχ (1)(ε, Rδ

(1,1)
−1 ) (green),

the dashed line corresponds to the partial contribution from the lowest cap-
ture channel J = 1, and the dotted lines to partial contributions from higher
capture channels; the curves are labeled by J values; the open circles indi-
cate the classical opening of the first partial channel from a (J, j, n) triad, the
filled circle marks the ANC contribution from the (1, 1, −1) triad in the limit
ε → 0; it coincides with the ACCl rate coefficient).

see Fig. 6. Then one can write

ANCχ (j )(κ, Rδ(J,j )
n

)∣∣
κ�1 ≈ ACClχ (j )(κ, Rδ(J,j )

n

)∣∣
κ�1. (5.4)

On the other hand, for κ � 1, one has

ANCχ (j )
(
κ, Rδ(J,j )

n

)∣∣
κ�1 = ACClχ (j )

(
κ, Rδ(J,j )

n

)∣∣
κ�1 = 1.

(5.5)
The comparison of the two limiting expressions of Eqs. (5.4)
and (5.5) suggests that ANCχ (j )(κ, Rδ

(J,j )
n ) may be rather close

to ACClχ (j )(κ, Rδ
(J,j )
n ) for all values of κ . Then the differ-

ence between ANCχ (j )(κ, Rδ
(J,j )
n ) and ACClχ (j )(κ, Rδ

(J,j )
n ) is ex-

pected to be due only to the quantum nature of the contribu-
tions from the higher partial waves, and not from the sigmoid
effect (see Eq. (4.13)). This is illustrated in Figs. 8 for the case
j = 1 and δ = Rδ

(1,1)
−1 = 2.12 when one channel is completely

open in the UL range.
Shown are the plots of ANCχ (1)(ε, Rδ

(1,1)
−1 ) and

ACClχ (1)(ε, Rδ
(1,1)
−1 ), as well as the partial rate coefficients

ANCχ (J,1)
n which include contributions from different n

channels. The global maxima of the plots ANCχ (J,1)(ε, δ̄(1)
1 )

roughly correspond to the classical opening of the first
channel from the triad (J, 1, n), while the local maxima and
the inflection points at higher energies signal the opening of
other n-channels. The energies of these points are close to the
energies of the classical opening of the respective channels
ε(J,1)
n (δ̄(1)

1 ) = (ANCc(J,1)
n (δ̄(1)

1 ))2/8 which are indicated by open
circles. The filled circle in the UL range corresponds to the
single open channel (1, 1, −1). Fig. 9 presents similar plots
for δ = Rδ

(2,1)
−1 = 5.65 when two capture channels are open in

the UL energy range (two filled circles).
We finally note that, for values of δ noticeably differ-

ent from Rδ
(J,j )
n (especially for δ close to the threshold val-

FIG. 9. As Fig. 8, but for δ = Rδ
(2,1)
−1 = 5.65 (the full lines give

ANCχ (1)(ε, Rδ
(2,1)
−1 ) and ACClχ (1)(ε, Rδ

(2,1)
−1 ), the dashed lines correspond to

the partial contribution for the two lowest capture channels J = 1 and J
= 2; the filled circles mark the ANC contributions from the (1, 1, −1) and
(2, 1, −1) triads in the limit ε → 0; their sum coincides with the ACCl rate
coefficient).

ues ANCδ
(J,j )
n ), the difference between ANCχ (j)(ε, δ) and ACχ (j)

(ε, δ) may become larger. Examples of such cases are dis-
cussed in Paper II36 of this series which also presents ther-
mally averaged rate coefficients for a range of δ as well as the
application of the ANC approach to the capture of CH3D by
ions.

VI. CONCLUSIONS

The complex formation in ion-molecule collisions often
represents a separate stage of the elastic, inelastic, and reac-
tive events. However, even this stage, described usually as a
half-collision, is accompanied by a host of inelastic processes
occurring on the way to the complex boundary. In this respect,
the dynamics of complex formation in collisions of a dipolar
isotropically polarizable symmetric rotors with ions represent
a rather simple problem that can be solved completely in the
quantum case which is of general interest in the context of the
physics of cold molecules (see, e.g., Ref. 35). The simplifi-
cation comes from the applicability of the weak-field approx-
imation for the molecule–ion interaction, from the adiabatic
approximation for the rotational transitions in a molecule, and
from the separation of the radial and rotational motion of the
colliding partners.

Under these conditions, the capturer dynamics is de-
scribed as uncoupled events occurring in the field of axi-
ally nonadiabatic channel (ANC) potentials that include the
anisotropic charge–dipole and Coriolis interactions as well
as the isotropic charge–induced dipole interaction. The ANC
potentials are calculated in the adiabatic approximation with
respect to transitions between different rotational states of
the top and in the weak-field limit of the charge–dipole in-
teraction. In scaled, reduced, variables δ, ρ defined by Eq.
(2.3) the mutually uncoupled scaled potentials υ(ρ, c) of Eq.
(3.2) depend on the parameters c. The latter represent a set of
eigenvalues of the ANC interaction matrix which depend on
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the quantum number of the total angular momentum Jof the
colliding partners, on the adiabatic quantum numbers j of the
intrinsic angular momentum of the top, on an additional quan-
tum number n that specifies the ANC channel for a given J, j
pair, and finally on the interaction parameter δ. The solution
of the wave equation with the appropriate capture boundary
conditions determines the capture probabilities and the ANC
energy-dependent capture rate coefficient. The latter, ANCχ ,
scaled to their Langevin counterpart χ = 1, depend on the an-
gular momentum of the top j, the scaled dipole moment δ in
a given rotational state j, k, and on the scaled collision energy
ε = E/EL with EL defined in Eq. (2.3), i.e., ANCχ ≡ ANCχ (j)

(ε, δ). This paper presented calculations of ANCχ (j)(ε, δ) at ul-
tralow collision energies and described the passage to medium
energies which made the quantum/classical correspondence
quite transparent. In this way, the present treatment fills the
gap between the limiting cases elaborated earlier, such as the
classical adiabatic channel (AC) treatment (valid for κ � 1
and δ � 1),19–21 the quantum FW treatment (valid for κ � 1
and δ < 1),22 and the quantum treatment for an isotropic in-
teraction that bridges the gap between the Langevin and Vogt-
Wannier limits (valid for arbitrary κ and δ = 0).32 The ANC
capture dynamics elaborated here illustrates the partial cou-
pling of the molecular angular momentum to the collision axis
for the charge–dipole interaction (interplay between the R−2

channel potentials and the R−2 Coriolis coupling) thus sup-
plementing previous studies of a gradual locking for charge–
quadrupole and resonance dipole–dipole interactions (inter-
play between the R−3 channel potentials and the R−2 Coriolis
coupling) and nearly sudden locking for steeper channel po-
tentials proportional to R−n with n > 3. Specific examples of
capture events of the described nature with noticeable quan-
tum effects are discussed in Paper II36 of this series with ref-
erence to collisions between isotopically substituted methane
molecules and different ions.
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