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Abstract 

We report here the application of optical-radio frequency double resonance spectroscopy for individual rotational levels of 
the NaK II’II state. Lambda doubling constant q values for five v’, J’ levels are obtained. These data are combined with 
measurements of dc e-fStark-mixing-induced changes in optical spectra, and the electric dipole moment d, in the D’II state is 
determined. 0 1997 Elsevier Science B.V. 
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1. Introduction 

The electronic-rotational interaction of the ‘II state 
with ’ C states induces well known A-doubling in ‘II 
with splitting AL’ = q[J(J + 1) -A], q being the A-dou- 
bling constant. Only quantitative information for A- 
doubling splitting in the NaK D’II state is given in [ 11, 
where the q value for levels with large rotational 
quantum number J (J 2 100) has been deduced 
from level shifts. However, for this state there exists 
developed spectroscopic information [l-3], including 
lifetime measurements [4]. Numerous more-or-less 
pronounced local perturbations caused by the D’I’- 
&II interaction have been revealed. 

Our interest in q values for particular rotational 
levels was caused by an investigation of electric 
dipole moment performed on the NaK D’II state. 
The usefulness of rf (or pw) spectroscopy in order 
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to determine A-doubling splitting for short-lived elec- 
tronic states has been demonstrated in [5] for the 
(A ‘II) CS molecule. In [6] Stark-effect-induced 
changes in laser-induced fluorescence (LIF) spectra 
from NaK D’II have been recorded, and the opti- 
cal-rf double resonance signal on the v’ = 7, J’ = 5 
level has been demonstrated, but only qualitative 
information without mentioning any q values is 
presented. 

2. Method 

Fig. 1 explains the methods used in this work. Due 
to the combination of AJ = 0, 2 1 and + - - 
selection rules, only P,R doublet emission is allowed 
at P- or R-type excitation of the ‘C -’ II transition, 
whereas only Q singlet emission is allowed at Q-type 
excitation. If, however, an external electric rf or dc 
field is applied, the + - - or elf Stark effect mixing 
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Fig. 1. Selection rules for ‘C - ‘II transition. 

in a ‘II state with fixed J gives rise to the appearance 
of forbidden lines. Therefore, one can observe in the 
LIF progression ‘II -’ C the whole (P,Q,R) triplet, 
instead of either doublets or singlets (see Fig. 2).Two 
types of experiment can be performed in such a sys- 
tem: 

recording the ‘forbidden’ line intensity as a func- 
tion of rf field frequency gives an optical-rf double 
resonance signal, from which A-splitting Ai’ or the 
q value for particular J can be deduced. 
measuring the intensity ratio between ‘forbidden’ 
and ‘parent’ lines as a function of static electric 
field gives the ratio of A-splitting to electric dipole 
moment d,: A$ / dn or q/d, 

3. Experimental 

The experimental set-up is shown in Fig. 3(a). 
23Na39K molecules were formed thermally in a glass 
cell joined to the vacuum system by means of a dry 
valve. The cylindrical head (Fig. 3(b)) of the cell was 
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a b 
Fig. 2. Effect of static electric field on spectrally resolved LIF for 
the NaK D’II -t X’C+ system: (a) transition from v’ = 
7, J’ = 23; (b) transition from v’ = 12, J’ = 7. 

made from special alkali-resistant glass tube, The 
electric field was produced by applying rf or static 
voltage across a pair of round polished stainless 
steel Stark plates. A separation of 0.85 +- 0.05 mm 
between the Stark plates was used for the resonance 
measurements. For dc Stark mixing altogether three 
cells were used, differing in diameter and spacing of 
the electrodes. The metal-containing reservoir was 
kept at a stabilized temperature between 270°C and 
320°C. 

Linearly polarized light from a cw Ar+ laser was 
used to excite X’C’ - D’II transitions in 23Na39K 
molecules. Fluorescence at right angles, both to the 
laser beam and to the electric field E, was imaged onto 
the entrance slit of a double monochromator (M) and 
registered in a photon counting regime. The particular 
D’II -P X’C’ LIF progressions were identified from 
the recorded LIF spectrum by comparison of line posi- 
tions and relative intensities with the ones calculated 
by means of a spectroscopic constant set as given in 
[ 11, for the transitions mentioned there at excitation by 
Ar+ laser lines. 

In the optical-electric rf double resonance experi- 
ments we used a l-300 MHz (0.2 W, 50 Q) Wuvefek 
rf oscillator (RF) supply, which was connected to the 
Stark plates (E). The rf field voltage enabled us to 
produce E:’ % 20 V cm-‘. A fast oscilloscope (OSC), 
placed closely across the plates, served as 50 fl load 
and as rf output drift monitor. An auxiliary generator 
output producing a dc voltage proportional to the gen- 
erated frequency was used to measure the voltage by 
means of a digital voltmeter. A computer (PC) 
together with the CAMAC system controlled the driv- 
ing and data collection of the experiment. In the dc 
Stark mixing experiments a dc voltage source was 
connected to the same Stark plates instead of the rf 
source. Polarizers (P) and the polarization plane rota- 
tor (R) fixed the polarization conditions for excita- 
tion-registration. 

4. Signals and results 

4.1. Optical-rf double resonance signals 

These were obtained by measuring the intensity of 
‘forbidden’ lines as a function of the electric field 
frequency. Multiple frequency sweeping in a chosen 
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Fig. 3. (a) Experimental set-up: P = polarizers, R = polarization plane rotator, E = Stark plates, OSC = osciloscope, RF = radiofrequency 
generator, M = spectrometer, PM = photomultiplier, PC = computer; (b) thermal cell. 

range and signal accumulation were used. The accu- 
mulation time varied from 10 min to 1 h. In order to 
diminish the influence of LIF intensity drift during 
signal accumulation the normalized difference 
(IF -ZF,,)/IFO was considered to be a result of a single 
measurement, that is the difference between intensity 
at current frequency F and at some reference fre- 
quency Fo. 

Fig. 4 presents experimental resonance signals for 
levels v’ = 12, J’ = 7 and v’ = 7, J’ = 23. Although the 

frequency, MM 

Fig. 4.Optical-rfdouble resonance signals: (a) - v’ = 12, J’ = 7; (b) 
_ v’ = 7, J’ = 23. 

resonance signal width exceeded the one expected 
from the natural broadening, probably with a tendency 
to exhibit some structure, we assumed that the signal 
was reliable enough to determine the elf separation, 
yielding q. Resonance signals were registrated for 
five v’, J’ levels; corresponding q values are given 
in Table 1. 

4.2. Intensity ratios 

Fig. 2 demonstrates the effect of a static electric 
field on the spectrally resolved LIF from v’ = 7, Jr = 
23 and v’ = 12, J’ = 7, leading to the appearance of the 
forbidden Q line due to elfmixing. A fitting procedure 
using three Gaussians was used to obtain the ‘forbid- 
den’l‘parent’ line ratio I&P,R dependences on electric 
field intensity. 

Ratio signal simulation and data fitting were 
accomplished using direct Hamiltonian diagonaliza- 
tion, accounting for Stark interaction within rotational 
states J -+ AJ, AJ = 0, 1 and 2 in initial, excited and 
final states [7]. Least-square data processing of the 
intensity ratios, obtained in different cells and geome- 
tries, allowed us to get q/d, ratios. The averaged 
values are (2.4 + 0.25) x 10” cm-’ D-’ for v’ = 7, 
J’ = 23 and (2.1 t 0.2) x 10” cm-’ D-’ for v’ = 12, 
J’ = 7. Taken together with q values obtained from 



58 

Table 1 
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Experimantal values of NaK (D ‘TJ,v’,/‘) A-doubling constant q determined from RF-optical double resonance 

v’ 3 4 7 12 14 
.I’ 23 19 23 I 19 
q (10.’ cm-‘) 1.39 2 0.06 1.32 C 0.06 1.42 + 0.07 1.03 + 0.08 1.33 * 0.05 

double resonance signals, the dipole moment values dipole moment values which have been measured 
have been determined: dp(v’ = 7, J’ = 23) = 5.9 -+ for diatomic molecules, but they are consistent with 
0.9 D; d,(v’ = 12, J’ = 7) = 4.8 % 0.9 D. theoretical predictions [8]. 

5. Discussion 

The q values presented in Table 1 lie between those 
obtained from conventional spectroscopic analysis 

1119 q” = 90 - 4l(V + 

1/2)=1.16x10-5-1.5x10-7(v+1/2)cm-’,andfrom 
the rf-optical double resonance signal [6] for NaK 
(D’II v’ = 7, J’ = S), yielding q = 1.5 x 10 
-5 cm-‘. Thus the q-factor values obtained do not dis- 
agree much with the previous data. Regarding the 
smaller q value for the v’ = 12, J’ = 7 level, it corre- 
sponds to what can be expected due to the D’ll-d311 
perturbation. Although the singlet-triplet interaction 
does not change ALr directly since the e andfcompo- 
nents of the D’II state are perturbed by the two A- 
doublet substates of the d311 state to about the same 
amount, this interaction diminishes the singlet char- 
acter of the perturbed state to Ct, . The D’II-d311 
mixing coefficient Cf, = 1 -C& can be estimated 
using the calculated difference between the deper- 
turbed D’II (v’ = 12) and d311 ( 
v’ = 13) terms [3], with J’ = 7 being E’, -Es, = - 
3.87 cm-’ and the level v’ = 12, J’ = 7 shift AE = 
0.468 cm-’ with respect to the deperturbed position. 
The estimated value of C:, equals 0.87, thus giving a 
reduction of the q value since A-doubling in the D’II 
state has to be C’,(D’IIk.‘I’C). As for the absolute 
dipole moment d,, values obtained here, they can be 
considered as very large when compared to typical 
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