
Published: May 02, 2011

r 2011 American Chemical Society 5027 dx.doi.org/10.1021/jp112098a | J. Phys. Chem. A 2011, 115, 5027–5037

ARTICLE

pubs.acs.org/JPCA

Mutual Capture of Dipolar Molecules at Low and Very Low Energies. II.
Numerical Study
M. Auzinsh,† E. I. Dashevskaya,‡,§ I. Litvin,‡,§ E. E. Nikitin,‡,§ and J. Troe*,§,||

†Department of Physics, University of Latvia, Riga LV-1586, Latvia,
‡Schulich Faculty of Chemistry, Technion�Israel Institute of Technology, Haifa 32000, Israel
§Max-Planck-Institut f€ur Biophysikalische Chemie, Am Fassberg 11, G€ottingen D-37077, Germany

)Institut f€ur Physikalische Chemie, Universit€at G€ottingen, Tammannstrasse 6, G€ottingen D-37077, Germany

1. INTRODUCTION

In part I of this work1 we have presented an analytical appro-
ximation to the low-energy rate coefficient for mutual capture of
two identical dipolar diatoms in their rotational ground (non-
resonant, j1 = j2 = 0) and first excited (resonant, j1 = 0, 1, j2 = 1, 0)
states. The analytical treatment relied on the limiting cases of a
perturbed-rotor (PR) approach: the adiabatic channel (AC)
approximation for the capture of dipoles in the classical limit
and the fly wheel (FW) approximation in the quantum limit of
s-wave capture. The limits were based on the jmJ and the jlJ
representations, respectively, and they were used for an inter-
polation such that one gets approximate expressions for capture
rate coefficients from zero energy to energies in the classical
domain. In the present work we use a close-coupling (CC)
treatment for the capture that describes the quantum fall of the
system onto an attractive center, accompanied by the locking of
the intrinsic angular momentum to the collision axis. In this
respect, the present paper extends our previous work on
radial2,3 and rotational4,5 nonadiabatic effects within classical
locking dynamics. Compared to the latter case, here we now
go beyond the coupled states (CS) model which assumes the
conservation of the R-helicity in a given channel.6,7 We also
study the convergence of the accurate rate coefficients to their
high-energy counterparts and assess the accuracy of the
analytical approximation proposed in ref 1.

The plan of this paper is the following. In section 2 we
characterize the long-range interaction between two polarizable
dipoles in the perturbed rotor approximation. Section 3 presents
the calculation of quantum rate coefficients for partners in
rotational states j1 = 0 and j2 = 0 (00 manifold of channels). In
section 4, the coupled-channel approach for capture of partners
in rotational states j1 = 0 and j2 = 1 (01 manifold of channels) is
described. Section 5 presents zero-energy and high-energy limit-
ing rate coefficients, and section 6 provides the bridge between
these limits and, for representative cases, shows a comparison
of numerical and analytical results. Section 7 gives a general
discussion as exemplified by two case studies, and section 8
concludes the paper.

2. LONG-RANGE INTERACTION BETWEEN TWO
POLARIZABLE DIPOLES AND THE CORRESPONDING
AC POTENTIALS

The long-range part of the interaction between two polariz-
able dipoles consists of a dispersion contribution Vdisp and a
dipole�dipole component Vdip�dip (we neglect here the induc-
tion energy which typically is small9). Normally, the isotropic
part of the dispersion interaction is much larger than the
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anisotropic part such that the latter will be neglected and Vdisp is
written as

VdispðRÞ ¼ � C6=R
6 ð2.1Þ

where R is the distance between the centers of mass of the
dipoles. In turn, Vdip.�dip. is totally anisotropic and reads

Vdip�dipðR, d1, d2Þ ¼ d1 3 d2 � 3ðd1 3 r̂Þðd2 3 r̂Þ
R3

ð2.2Þ

where d1 and d2 are the dipole moment vectors of rotors 1 and 2
and r̂ is the unit vector directed along the collision axis R. In our
work we express the interaction in eqs 2.1 and 2.2 in first and
second order in the basis functions |jmJæ that correspond to the
AC approach within the PR approximation. The latter considers
the quantum number of the intrinsic angular momentum j as a
good quantum number. Since in the following we only consider
channels belonging to the 00 and 01 manifolds, j can be regarded
as the quantum number of a single rotor, being either j = 0 or
j = 1. The additional quantum numbers for the AC potentials are
the projection of j onto R, m = 0, (1, and the quantum number
p =(1 that specifies the symmetry with respect to the permuta-
tion of two rotors.

The AC interaction potentials for nonresonant (00) and
resonant (01 and 10) channels read as 1

V 00ðRÞ ¼ � C6

R6
� d4

6BR6
ð2.3Þ

V 01, p
m ðRÞ ¼ � C6

R6
� 2d4

27BR6
þ ð3m2 � 2Þ p

d2

3R3
þ d4

270BR6

" #

ð2.4Þ
where B is the rotational constant of the rotors (in energy units).
The terms proportional to d4 in eqs 2.3 and 2.4 are the second-
order dipole�dipole corrections with respect to free rotor states
that correspond to the coupling j = 0f j0 = 1 and j = 1f j0 = 0, 2,
respectively. The term proportional to d2 is the first-order
dipole�dipole interaction. For simplicity, we neglect the small
correction proportional to d4 in the square brackets in eq 2.4 and
we rewrite the preceding equations as

V 00ðRÞ ¼ � C00
6

R6
ð2.5Þ

V 01, p
m ðRÞ ¼ � C01

6

R6
þ ð3m2 � 2Þpd

2

R3
ð2.6Þ

3. CAPTURE IN THE NONRESONANT MANIFOLD (00)

Following ref 10, in this section we introduce a reduced
distance F = R/R6

00 with R6
00 = (2μC6

00/p2)1/4 and a reduced
energy υ = V/E6

00 with E6
00 = p2/μ(R6

00)2 such that the reduced
wave vector κ is expressed through the collision energy as κ =
(2E/E6

00)1/2. Nonresonant capture in the (00) manifold then
occurs in the field of a single effective AC (EAC) potential
EACυ00,J(F) given by

EACυ00, JðFÞ ¼ JðJ þ 1Þ
2F2

� 1
2F6

ð3.1Þ

and the capture wave equation reads as

� 1
2
d2ψ00, J

dF2
þ EACυ00, JðFÞψ00, J ¼ k2

2
ψ00, J ð3.2Þ

Since in this section we discuss only the (00) manifold, for
simplicity of notation, we suppress superscripts 00. The solution
of the above equation, with an absorbing boundary condition at
small F, yields the capture probabilities PJ(κ) and, from this, the
scaled capture rate coefficients

χðkÞ ¼ ∑
¥

J¼ 0
χJðkÞ, χJðkÞ ¼ ð2J þ 1ÞPJðkÞ

2k
ð3.3Þ

When J is replaced by l, this expression coincides with eq 14 of ref
10 for the rate coefficient of capture of structureless particles in
the field of an attractive R�6 potential (for unscaled rate
coefficients; see section 7 of this paper).

For κ, 1, the threshold expressions of the Pl are given by the
analytical formulas:

PlðkÞ ¼
c0k� ðc0kÞ2=2þOðk3Þ for l ¼ 0

clk2l þ 1 þOðk2l þ 2Þ for l > 0

8<
: ð3.4Þ

where

cl ¼ 8π2

ð16Þss2½ΓðsÞ Γðs=2Þ�2 ð3.5Þ

with s= lþ 1/2.14Note thatPl(κ)|J=0 explicitly contains two terms
rather than one, such as this is the case for l > 0 (see ref 11, section
143). Expression 3.4 conforms with the Bethe limit, yielding

lim
k f 0

χðkÞ ¼ c0=2 ¼ 0:956 ð3.6Þ
while the classical rate coefficient Clχ(κ) vanishes with κ as κ1/3.

For arbitrary κ, the approximate analytical expressions for
Pl(κ) are available up to l = 4.12 Under conditions where the
channel with l = 3 is classically open for capture, the relative
accuracy of the classical approximation

ClχðkÞ ¼ ð3=4Þð2kÞ1=3 ð3.7Þ
is better than 5%. Graphs of χ(κ), χl(κ), and Clχ(κ) vs κ are
shown in sections 4 and 5 (Figures 3 and 8) though in a different
scaling (the scaling length for the 00 manifold discussed here is
R6
00 while that for the 01 manifold in sections 4 and 5 is R6

01).

4. CAPTURE IN THE RESONANT MANIFOLD (01)

Capture in the 01 manifold is described by coupled equations
which can be formulated either in jmJ or jlJ representation.
Within the PR approximation for the interaction matrix, the
coupling in the former representation is due to Coriolis interac-
tion, while in the latter representation it is due to the off-diagonal
part of the dipole�dipole interaction. The coupled equations in
either representation have a simple structure as a consequence of
the three integrals of motion, of total angular momentum
(quantum number J), total parity (quantum number I), and
permutation symmetry (quantum number p). For simplicity of
notation, in this and the following sections we again suppress the
superscripts 01 that specify the resonance manifold. The wave
functions in the jmJp representation do not necessarily corre-
spond to definite total parity I. but they can be transformed by
linear combinations of |jmJpæ and |j � mJpæ to new functions
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|jnJIpæ with n = |m| and a certain I. The definite assignment for I0
and I00 can be obtained after passage to the asymptotic region
where l becomes a good quantum number. A general relation
between the |jnJIpæ and |jlJpæ functions is provided by the vector
addition rules13 slightly modified in their application to the
parity-adapted basis (for a detailed discussion, see ref 14). For
our case j = 1, these relations read as

j1; n; J; I0; pæjn¼ 0 ¼
ffiffiffiffiffiffiffiffiffiffi
J

2Jþ1

r
� j1; l; J; pæjl¼ J�1 �

ffiffiffiffiffiffiffiffiffiffi
Jþ1
2Jþ1

r
� j1; l; J; pæjl¼ Jþ1

ð4.1aÞ
j1; n; J; I0; pæjn¼ 1 ¼ffiffiffiffiffiffiffiffiffi

Jþ1
2Jþ1

r
� j1; l; J; pæjl¼ J�1 þ

ffiffiffiffiffiffiffiffiffiffi
J

2Jþ1

r
� j1; l; J; pæjl¼ Jþ1 ð4.1bÞ

j1; n; J; I00; pæjn¼ 1 ¼ j1; l; Jæjl¼ J ð4.1cÞ
which allows one to explicitly identify the total parity I = (�1)lþj

through I0 = (�1)J, I00 = �(�1)J. In what follows we adhere to
the following convention: the quantum numbers which are the
same for a given triplet of states (i.e., J, p) will appear as
superscripts, while those which vary (i.e., m, or n,I, or l) as
subscripts.

We now consider the coupled equations in the jnJIp repre-
sentation. Using the reduced variables F = R/R6

01 and κ =
(2E/E6

01)1/2 with an additional parameter δ = μd2/3p2R6
01, we

first write the effective AC (EAC) potentials in the jmJp basis as

Clυp
mðF; J, δÞ ¼ JðJ þ 1Þ þ 2�2m2

2F2
� 1
2F6

þ ð3m2�2Þpδ
F3

ð4.2Þ
withm = 0,�1,þ1. In the |jnJIpæ basis, the three potentials from
eq 4.2 transform into EACυn,I

J,p with n = 0, 1 and I = I0, I00:

EAC υJ, p
0, I0 ðF; δÞ ¼

JðJ þ 1Þ þ 2
2F2

� 1
2F6

� 2pδ
F3

EACυJ, p
1, I0 ðF; δÞ ¼

JðJ þ 1Þ
2F2

� 1
2F6

þ pδ
F3

EACυJ, p
1, I00 ðF; δÞ ¼

JðJ þ 1Þ
2F2

� 1
2F6

þ pδ
F3

ð4.3Þ

The diagonal elements in eq 4.3 are supplemented by the off-
diagonal Coriolis coupling between the states |j0JI0pæ and
|j1JI0pæ, i.e., by

CυJ
I0, I0 ðF; δÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þp
F2

ð4.4Þ

Equations 4.3 and 4.4 define the interaction matrix ŶJ,p which, in
the representation of the column vector radial wave function
ΨJ,p = {ψ0,I0

J,p , ψ1,I0
J,p , ψ1,I0 0

J,p }, is of the form

Ŷ
J, p ¼

EACυJ, p
0, I0

CυJ
I0, I0 0

CυJ
I0, I0

EACυJ, p
1, I0 0

0 0 EACυJ, p
1, I00

0
BBB@

1
CCCA ð4.5Þ

The radial wave equation for ΨJ,p reads

� d2

2 dF2
ΨJ, p þ Ŷ J, p

3Ψ
J, p ¼ k2

2
ΨJ, p ð4.6Þ

By solving eq 4.6 with the capture boundary conditions (only an
incoming wave for small Fwhere the dipole�dipole interaction is
stronger than the Coriolis coupling) and with standard boundary
conditions for large F (only an incoming wave in one of the
channels and outgoing waves in the other channels), for given
J and p, three capture probabilities are determined, P̂J,p = {P0,I0

J,p ,
P1,I0
J,p , P1,I0 0

J,p }. The general expression for the p-specific scaled
energy-dependent rate coefficient χp(κ,δ) in reduced variables
and in this representation is

χpðk, δÞ ¼ 1
6k ∑

I¼ I0, I00
∑

n¼ 0, 1
∑
J g n

ð2J þ 1ÞPJ, pn, Iðk, δÞ
" #( )

ð4.7Þ
If the capture problem is formulated in the jlJp representation
and the respective capture probabilities Pl

J,p are calculated, the
expression for χp reads

χpðk, δÞ ¼ 1
6k ∑

¥

J¼ 0
∑
Jþ1

l¼jJ�1j
ð2J þ 1ÞPJ, pl ðk, δÞ

2
4

3
5 ð4.8Þ

Note that, at the left-hand side of eq 4.8, the total parity quantum
number I does not appear since it is determined by j and l as
I = (�1)jþl.

The p-averaged rate coefficient is given by

χðk, δÞ ¼ 1
2
ðχþðk, δÞ þ χ�ðk, δÞÞ ð4.9Þ

Expression 4.9 for χ(κ,δ) is valid for two incoherent initial states
differing in p. If the initial state corresponds to a coherent
superposition of two p-states (as, e.g., is the case for collision
of a rotationally excited diatom with the corresponding ground-
state diatom), eq 4.9 is valid under the additional assumption that
the accumulated phase difference between different p-states does
not affect the absorption at the complex boundary.
The probabilities Pn,I

J,p in the jnJI representation are related to
Pl
J,p in the jlJ representation by the unitary relation

PJ, pl jl¼ J ¼ PJ, pn, I00 jn¼ 1

PJ, pl jl¼ J � 1 þ PJ, pl jl¼ J þ 1¼ PJ, pn, I0 jn¼ 0 þ PJ, pn, I0 jn¼ 1

ð4.10Þ

This relation allows one to represent χp in a unified way as

χpðk; δÞ ¼ ∑
¥

J¼ 0
∑

I¼ I0;I00
χJ;I;pðk; δÞ

χJ;I;pðk; δÞ ¼ 1
6k

ð2J þ 1ÞPJ;I;pðk; δÞ ð4.11Þ

Here

PJ, I, pðk, δÞ ¼ ðPJ, pl ðk, δÞjl¼ J � 1 þ PJ, pl ðk, δÞjl¼ J þ 1Þ�δII0

þ PJ, pl ðk, δÞjl¼ J � δII00

¼ ðPJ, pn, I0 ðk, δÞjn¼ 0 þ PJ, pn, I0 ðk, δÞjn¼ 1Þ�δII0

þ PJ, pn, I00 ðk, δÞjn¼ 1 � δII00 ð4.12Þ
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which is useful in displaying the partial structure of χ (see below).
The partial contributions to χ can, therefore, be specified by
triads of exact quantum numbers JIp, i.e., the total angular
momentum J, total parity I, and the permutation index p. For
small κ, the capture probability in the l = 0 channel will be a linear
function of κ (the Bethe limit), while the probabilities with l > 0
will display a stronger κ dependence. We thus have

PJ, pl ðk, δÞjJ¼ 1, l¼ 0, k f 0 ¼ RpðδÞk ð4.13Þ
The given expressions simplify in the two limiting cases δ = 0

and δ . 1. For δ = 0, eq 4.6 can be decoupled by a
F- independent transformation of the AC basis. As a result, the
probabilities Pl

J,pwith |l� 1|e Je lþ 1 and p =( become equal
to each other, and the sum in eq 4.10, after regrouping, collapses
into χh

l,p(κ,δ)|δ=0 = (2lþ1)Pl(κ), where Pl(κ) is the capture
probability for the potential �1/2F6 and

χh
pðk, δÞjδ¼ 0 ¼ 1

2k ∑
¥

l¼ 0
ð2lþ 1ÞPlðkÞ

PlðkÞ ¼ PJ, pl jJ¼ l � 1 ¼ PJ, pl jJ¼ l ¼ PJ, pl jJ¼ l þ 1 ð4.14Þ
The counterpart of eq 4.13 reads

PlðkÞjl¼ 0, k f 0 ¼ R0ðδÞk ð4.15Þ
For δ. 1, onemay pass to new reduced variables ~F = F/δ and

κ~ = κδ and define the new scaled rate coefficient χ~(κ~)

χ~ðk~Þ ¼ lim
δ f ¥

χðk, δÞ
δ

ð4.16Þ

The quantity χ~(κ~) then is expressed via capture probabilities by
equations similar to eqs 4.10�4.12; i.e.,

χ~pðk~Þ ¼ ∑
¥

J¼ 0
∑

I¼ I0, I00
χ~J, pI ðk~Þ

χ~J, I, pðk~Þ ¼ 1
6k

ð2J þ 1Þ~PJ, I, pðk~Þ ð4.17Þ

where

~P
J, I, pðk~Þ ¼ ð~PJ, pl ðk~Þjl¼ J � 1 þ ~P

J, p
l ðk~Þjl¼ J þ 1Þ � δII0

þ ~P
J, p
l ðk~Þjl¼ J � δII00

¼ ð~PJ, pn, I0 ðk~Þjn¼ 0 þ ~P
J, p
n, I0 ðk~Þjn¼ 1Þ � δII0

þ ~P
J, p
n, I00 ðk~Þjn¼ 1 � δII00 ð4.18Þ

~P
J, p
l ðk~ÞjJ¼ 1, l¼ 0, k~ f 0 ¼ R¥k~ ð4.19Þ

Here the P~n,I
J,p(κ~) are calculated from the solution of the capture

wave equation of eq 4.6 with the potentials from eqs 4.3 and 4.4,
where F is replaced by ~F, κ by κ~, δ is put equal to unity, and the
term proportional to F�6 is disregarded. Note that κ~ does not
contain any information about a vanishing dispersion interaction
and is expressed through the dipole moment d, the reduced mass
μ and the wave vector k as κ~ = δk = (d2μ/3p3)k. It is thus clear
that R¥ = (R(δ)/δ)|δ.1.

For the 00 manifold, the capture channels are decoupled, and
the only quantum effect in the capture is the tunneling and
overbarrier reflection of the collision partners across the

centrifugal barriers. The same feature happens for capture in
the 01 manifold for δ = 0 such that the rate coefficients for the
former case are identical to those for the latter case provided that
one takes into account a different scaling (length parameter R6

00

for the 00 manifold and R6
01 for the 01 manifold). Therefore we

skip the discussion of the capture in the 00 manifold.
For the 01 manifold and δ 6¼ 0, the capture channels are

coupled, and the tunneling and overbarrier reflection occur
on the background of nonadiabatic coupling which accompanies
the locking of the intrinsic angular momentum to the collision
axis. Each capture channel is specified by a triad of exact quantum
numbers J,I,p and an additional quantum number l that has
the asymptotic meaning of the quantum number of the orbital
angular momentum l. For the triad J = 0, I =þ, p =( , l assumes
the single value l = 1; for all other triads with J g 1, one has l =
J� 1, J, Jþ 1. With this definition of l, the total parity quantum
number becomes redundant since I =�(�1)l, and the set J,I,p, l
can be shortened to J,p,l. In the following discussion of the rate
coefficient for the 01 manifold, in section 5 we consider two
limiting cases: capture at very small energy (the Bethe limit) and
capture at energies high enough to fall into the category of the
quantum-classical regime as defined by Billing,8 and in section 6
we consider the range between these limits.

5. LOW- ANDHIGH-ENERGY LIMITS OF CAPTURE RATE
COEFFICIENTS

For small κ, the largest capture probability is linear in κ, the
respective cross-section is inversely proportional to κ, and the
rate coefficient at κ f 0 approaches a constant (Bethe limit),
Bχ(δ). We therefore have

χðk, δÞjk f 0 � BχðδÞ ¼ RðδÞ=2,
RðδÞ ¼ ðRþðδÞ þ R�ðδÞÞ=2 ð5.1Þ

The plot of R(δ), determined by numerical solution of the
coupled equations discussed above, is shown in Figure 1 (solid
line). Also shown is the analytical approximation, FWR(δ)
(dashed line), that is derived from the fly wheel (FW) approach

Figure 1. Graphs of FWR(δ) (dashed line), FWfitR(δ) (solid line) and
R(δ) (circles) as well as of the modified zero-energy quantum rate
coefficient BX(δ) (triangles). The latter plot represents an intersection
of the function K(ε,δ) by the plane ε = 0 (see section 7 and Figure 13).

http://pubs.acs.org/action/showImage?doi=10.1021/jp112098a&iName=master.img-001.jpg&w=240&h=189
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for an uncoupled channel with the FW potential:1

FWυ01
p, l¼ 0 � FWυ01

0 ðFÞ ¼ � 1
2F6

�2δ2

3F4
ð5.2Þ

The explicit expression for FWR(δ) reads as1,15

FW RðδÞ ¼ 8jFðδÞj sinðπ=4�arg FðδÞÞ

FðδÞ ¼ Γð3=4� iδ2=3Þ
Γð1=4� iδ2=3Þ ð5.3Þ

We see from Figure 1 that the logarithmic graph of R(δ) with high
accuracy by a simple shift can be superimposed onto the graph of
FWR(δ). To qualitatively understand this feature, we adhere to
the picture of an uncoupled potential, justmodifying its FWversion
by a diagonal nonadiabatic correction (DNC) which is known
to be positive and equal to the expectation value of the
operator �∂

2/2∂F2 for an adiabatic wave function.16 In our case,
this function, FWDNC, is this FW function FW|J = 1, j = 1, l = 0æ
augmented with a correction proportional to FW|J = 1, j = 1, l = 2æ.
The coefficient γ(F) in front of the latter is the ratio of the
dipole�dipole interaction, �δ/F3, to the rotational energy differ-
ence between states with l = 0 and l = 2, �/F2; i.e., γ(F) � δ/F.
Calculations similar to that outlined in section 7 of ref 16 yield

ÆFWDNCj � D2=2DF2jFWDNCæ � ðDγ=DFÞ2 � δ2=F4

ð5.4Þ
The correction from eq 5.4 together with the FW potential from
eq 5.3 leads to the following expression for FWDNC potential

FWDNCυ01
p, l¼ 0 � FWυ01

0 ðFÞ ¼ � 1
2F6

�2c2δ2

3F4
ð5.5Þ

where the numerical coefficient c2 is smaller than unity. This
explains why the graph of FWDNCR(δ) (as well as R(δ) which is
presumably approximated by FWDNCR(δ)) is simply shifted
relative to FWR(δ) when plotted on logarithmic scale. The
coefficient c2, of course, can be calculated within the above
approach, but the respective quantity FWDNCR(δ) = FWR(cδ) is
not expected to provide a good approximation to R(δ) since
interchannel coupling is neglected. One could, however, consider
c as a fitting parameter, fitc, that would ensure the correct linear
behavior of FWfitR(δ)|δ.1 � FWR(fitcδ)|δ.1 = (8/

√
3)fitcδ =

4.619fitcδ. A comparison with numerically determined R(δ)|δ.1 =
4.367δ yields fitc = 0.945. Figure 1 presents graphs of FWR(δ),
FWfitR(δ), andR(δ) which demonstrate the very good performance
of the analytical approximation to R(δ), R(δ) ≈ FWfitR(δ) �
FWR(fitcδ), and it shows that the FW approach represents a
reasonable reference basis for a discussion of the effect of
coupling on capture in the limit of low energies.

For future use, we introduce a modified Bethe rate coefficient as

BXðδÞ ¼ δ1=3 � BχðδÞ ð5.6Þ
The plot of BX(δ) vs δ is also shown in Figure 1. For δ , 1 and
δ. 1, the expressions for BX(δ) are

BXðδÞ ¼ R0δ
�1=3, δ , 1

~R¥δ
2=3, δ . 1

8<
: ð5.7Þ

Here R0 is known from the analytical calculation for an un-
coupled single channel, and R¥, from the present numerical
calculations for coupled channels.

For large κ, when the rate coefficients are dominated by many
partial channels, the relative motion in the majority of these
channels is quasiclassical in the WKB sense, and the quantum
rate coefficient χ should converge to its quantum-classical
counterpart. Within this approach, the rotation of the dipoles
is described quantum-mechanically while the relative motion is
treated classically. A consistent quantum-classical theory would
require some kind of blending of classical and quantum me-
chanics. This is a difficult task in the strong-coupling case, and a
variety of approaches are available.8 The easiest one would be a
common-trajectory approach, which, however, is not applicable
to cases where the spacings between the states of the quantal
subsystem (i.e., the spacing between AC potentials) are compar-
able or larger compared to the energy of the classical subsystem.
In this situation we resort to the AC uncoupling between the
perturbed rotor states and the states of relative motion, which
allows us to treat the former quantum-mechanically and the latter
classically. In suggesting this approach, we refer to our classical
study of capture of j-specific dipolar molecules in an anisotropic
R�3 potential, where the classical AC approach was shown to
provide quite a good approximation to the numerically accurate
results for rate coefficients of unpolarized rotors.4,5 Within this
quantum-classical AC approach, which below simply will be
called classical (superscript Cl), the capture rate coefficient is
written as

Cl χ ¼ 1
12k ∑p¼(

∑
m¼ 0,-1

Z ¥

0
2J d JClPJ, p

m ðk, δÞ ð5.8Þ

Here the capture probability is given by the step function Θ

ClPJ, p
m ðk, δÞ ¼ Θðk�kpmðJ, δÞÞ ð5.9Þ

in which the threshold wave vector κm
p (J,δ) is determined from

the maximum of the effective potential:

ðkpmðJ, δÞÞ2=2 ¼ maxfClυp
mðF; J, δÞg ð5.10Þ

with

Clυp
mðF; J, δÞ ¼ J2

2F2
� 1
2F6

þ ð3m2�2Þpδ
F3

ð5.11Þ

Changing from κ to the classical scaled energy ε by the relation

k ¼ δ
ffiffiffi
ε

p
, ε ¼ E=E01� , E01� ¼ d4=36C01

6 ð5.12Þ
we introduce the modified classical rate coefficient ClX(ε) as

ClXðεÞ ¼ δ�1=3 � Clχðε, δÞ ð5.13Þ
Here

ClXðεÞ ¼ 1
6
ðXþ2ðεÞ þ 2Xþ1ðεÞ þ 2X�1ðεÞ þ X�2ðεÞÞ

ð5.14Þ
with

XνðεÞ ¼ 3
2k

Φ1=3ðε, νÞ½Φðε, νÞ þΔ�Θ½ ffiffiffiεp þ ν�

Φðε, νÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2

16
þ ε

2

r
� ν

4

ð5.15Þ



5032 dx.doi.org/10.1021/jp112098a |J. Phys. Chem. A 2011, 115, 5027–5037

The Journal of Physical Chemistry A ARTICLE

where the step function Θ(x) closes the capture channels once
the collision energy becomes less than the height of the barriers
for those AC potentials which are asymptotically repulsive
(negative ν). (Note that

√
3 in the argument of the Θ function

in eq 16 of part I 1 is misprinted and should be removed.)
For ε , 1 and ε . 1, the expressions for ClX(ε) are

ClXðεÞ ¼ ð2þ 22=3Þε�1=6=4, ε , 1

3ð4εÞ1=6=4, ε . 1

8<
: ð5.16Þ

The function ClX(ε) attains its minimum at ε = 1, such that ClXmin

= 1.018. A plot of this function is shown in Figure 2. The
noticeable bend on the graph in the range 1 < ε < 10 arises from
the opening of channels with asymptotically repulsive interactions.

6. RATE COEFFICIENTS AT INTERMEDIATE ENERGIES.
COMPARISON WITH ANALYTICAL APPROXIMATIONS

Advancing to the general case (arbitrary κ), in Figures 3�7 we
show graphs of p-averaged rate coefficients χ(κ,δ) vs κ (solid
heavy line) and their partial terms χI

J,p(κ,δ) (dotted and solid
lines) for five representative choices of δ: δ = 0, δ = 0.1, δ = 1, δ =
2, and δ. 1; the partial contributions are marked by the triads J,
I,p.The appropriate comments to these figures are as follows.

Figure 3, δ = 0, vanishing dipole�dipole interaction. Each
capture channel is specified by l, and it is, in general, degenerate
with respect to J and p. Explicitly, the degenerate components are as
follows: triads (1,�,() for l = 0, triads (0,þ,(), (1,þ,(), (2,þ,()
for l = 1, triads (1,�,(), (2,�,(), (3,�,() for l = 2, and triads
(2,þ,(), (3,þ,(), (4,þ,() for l=3, etc. The rate coefficient passes
through a shallow minimum that separates two-channel and many-
channel capture. The increase of χ(κ,δ)|δ=0 to the right from the
minimum corresponds to a similar behavior of BX(ε) in Figure 2.

Figure 4, δ = 0.1, weak dipole�dipole interaction. The degen-
eracy is slightly lifted, but for the two lowest capture channels the
p =þ and p =� splitting it is not discernible. The general pattern
of χ(κ,δ)|δ=0.1 is similar to that of χ(κ,δ)|δ=0 in Figure 3.

Figure 5, δ = 1, medium dipole�dipole interaction. The
degeneracy is visibly lifted, and the minimum is more expressed.

Otherwise, the general pattern of χ(κ,δ)|δ=1 is similar to that of
χ(κ,δ)|δ=0.1 in Figure 3.

Figure 6, δ = 2, medium dipole�dipole interaction. The
general pattern of χ(κ,δ)|δ=1 is similar to that of χ(κ,δ)|δ=0.1
in Figure 5, except for a deeperminimum near to the beginning of
the increase of the rate.

Figure 7, δ . 2, very strong dipole�dipole interaction.
The minimum of χ(κ,δ)|δ.1 within the range of κ~ shown dis-
appears, and the rate in the many-channel capture regime corre-
sponds to the negative energy dependence of BX(ε) in Figure 2 to
the left from its minimum. Note that in this case half of the channels
are closed for capture, such as this is also the case for BX(ε).

Figure 2. Graph of the modified classical rate coefficients ClX(ε). This
plot represents an intersection of the function K(ε,δ) by the plane δ =
constant . 1 (see section 7 and Figure 13).

Figure 3. Graphs of rate coefficient χ(κ,δ) vs κ (solid line) and the
partial contributions χl(κ,δ) (labeled by the values of l, dotted lines) for
δ = 0 and l = 0, 1, 2, 3, and 4.

Figure 4. Graphs of the p-averaged rate coefficients χ(κ,δ) vs κ (solid
line) and their main partial contributions χI

J,p(κ,δ) (labeled by triads J,I,p
in the order of their appearance: dotted lines for p =þ1 and dashed lines
for p =�1) for δ = 0.1 and J = 0, 1, 2, and 3. Partial contributions are not
shown for κ > 4, where there are toomany curves to be discernible in this
figure. Note that the partial contributions with I = I0, which are expressed
through two probabilities, each of sigmoid shape, do not show two
maxima since the second one lies outside the displayed range of κ.

http://pubs.acs.org/action/showImage?doi=10.1021/jp112098a&iName=master.img-002.jpg&w=240&h=192
http://pubs.acs.org/action/showImage?doi=10.1021/jp112098a&iName=master.img-003.jpg&w=240&h=188
http://pubs.acs.org/action/showImage?doi=10.1021/jp112098a&iName=master.img-004.jpg&w=240&h=187


5033 dx.doi.org/10.1021/jp112098a |J. Phys. Chem. A 2011, 115, 5027–5037

The Journal of Physical Chemistry A ARTICLE

The transition from the Bethe and to the classical limit, i.e., the
convergence of χ(κ,δ) (solid line) from its zero-energy limit Bχ(δ)
to Clχ(κ,δ) (dotted line) is shown in Figures 8�12. For illustration
of the importance of the Coriolis coupling, Figures 8�12 also show
ACχ (dashed curves), i.e., capture rate coefficients calculated within
standardACapproximation by integrationof eq 4.6with off-diagonal
terms disregarded. The vanishing of the AC rate coefficient in the
limit κ f 0 results from the κ3 dependence of the largest capture
probability in the tunneling through the lowest potential barrier of
the effectiveACpotential EACv0

0,þ=1/F2� 2/F3. Twoother features
should be noted. First, the undulatory behavior of the quantum rate
coefficientswith respect to classical rate coefficients in Figures 6�9 is
the counterpart of a similar behavior for capture in an isotropic
potential such as that noted earlier.10 Second, with increasing
collision energy the accurate rate coefficients χ(κ,δ) converge to
the classical AC rate coefficients Clχ(κ,δ) for which the Coriolis

Figure 6. Same as Figure 4, but for δ = 2.

Figure 7. Same as Figure 4, but for δ . 1.

Figure 8. Convergence of the quantum rate coefficients χ(κ,δ) (solid
line) to their classical counterparts Clχ(κ,δ) for δ = 0 (dotted line,
eq 3.7). Also shown are the analytical approximations χapp(κ,δ) from
eq 6.1 (symbols). The arrowmarks the value of the wave vector at which
the two branches of χapp(κ,δ) from eq 6.1 approach each other.

Figure 9. Same as Figure 8, but for δ = 0.1.

Figure 5. Same as Figure 4, but for δ = 1.

http://pubs.acs.org/action/showImage?doi=10.1021/jp112098a&iName=master.img-005.jpg&w=240&h=192
http://pubs.acs.org/action/showImage?doi=10.1021/jp112098a&iName=master.img-006.jpg&w=240&h=189
http://pubs.acs.org/action/showImage?doi=10.1021/jp112098a&iName=master.img-007.jpg&w=240&h=191
http://pubs.acs.org/action/showImage?doi=10.1021/jp112098a&iName=master.img-008.jpg&w=240&h=191
http://pubs.acs.org/action/showImage?doi=10.1021/jp112098a&iName=master.img-009.jpg&w=240&h=186
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coupling is neglected. This is consistent with the progressively
weaker role of the rotational coupling in the region of passage across
the centrifugal barriers with an increase of the total angular
momentum. This observation applies, of course, to the capture
of rotationally unpolarized molecules when the averaging over
R-helicity projections, whether accomplished in the asymptotic
region or in the region of the barriers, makes only a little difference.

Figures 8�12 also show a comparison of the accurate quan-
tum rate coefficients and their analytical approximation sug-
gested in part I1 (symbols):

χappðk, δÞ ¼
FWχTQKðk, δÞ, k < kcðδÞ
Clχðk, δÞ, k > kcðδÞ

8<
: ð6.1Þ

where Clχ(κ,δ) is given by eqs 5.8�5.11 and FWχTQK(κ,δ)
corresponds to the Troe�Quack�Klots (TQK) expression1

FWχTQKðk, δÞ ¼ 1�expð�FWRðδÞkÞ
2k

ð6.2Þ

which conforms with the FW Bethe limit

B�FWχ ¼
B�FWRðδÞ

2
ð6.3Þ

In eq 6.1, κc is the point of crossing or avoided crossing of the
curves FWχTQK(κ,δ) and Clχ(κ,δ). Approximately, κc(δ) can be
estimated from the relation κc(δ) ≈ 1/FWR(δ).

For δ . 1, the counterpart of eq 6.1 is

χ~appðk~Þ ¼
FWχ~

TQK

0 ðk~Þ, k~< k~c
Clχðk~Þ, k~> k~c

8<
: ð6.4Þ

with

FWχ~TQK0 ðk~Þ ¼
1�exp �ð8= ffiffiffi

3
p Þk~

� �
2k~

Clχ~ðk~Þ ¼ ð2þ 22=3Þ
4

k~�1=3 ð6.5Þ

As an example, the small mismatch between FWχ~0
TQK(κ~) and

Clχ~(κ~) at the point of the narrowly avoided crossing at κ~c = 0.165
equals 0.019; see Figure 10.

From Figures 10�12 we see that, at low energies, FWχTQK(κ,δ) is
larger than χ(κ,δ). This can be ascribed to the effect of a coupling
between the capture channels, in particular to the neglect of the
diagonal positive correction16 to the attractive FW interaction that
comes from the nonadiabatic radial coupling. The effect of the coupling
gradually disappears with increasing collision energy since the transi-
tions between coupled channels do not show up whenmany channels
are equally populated in the asymptotic region.

7. DISCUSSION

In conventional units, the rate coefficients k00(E) and k01(E)
as a function of the collision energy E read as

k6¼ðEÞ ¼ 2πpR6¼6
μ

χ6¼ðk, δÞjk¼R6¼6
ffiffiffiffiffiffi
2μE

p
=p

ð7.1Þ

Figure 10. Same as Figure 8, but for δ = 1.

Figure 11. Same as Figure 8, but for δ = 2.

Figure 12. Convergence of the p-averaged quantum rate coefficients
χ~(κ~) (solid line) to their classical counterparts Clχ~(κ~) (dotted line,
eq 6.5). Also shown is the analytical approximation χ~app(κ,δ) from
eq 6.4 (symbols) and the adiabatic channel approximation to the rate
(dashed line). The arrowmarks the value of the wave vector, at which the
two branches of χ~app(κ,δ) from eq 6.4 are closest to each other.

http://pubs.acs.org/action/showImage?doi=10.1021/jp112098a&iName=master.img-010.jpg&w=240&h=191
http://pubs.acs.org/action/showImage?doi=10.1021/jp112098a&iName=master.img-011.jpg&w=240&h=195
http://pubs.acs.org/action/showImage?doi=10.1021/jp112098a&iName=master.img-012.jpg&w=240&h=190
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where 6¼ stands for 00 or 01, R6
6¼ = (2 μC6

6¼/p2)1/4, and δ = 0 for
the 00 manifold.

Using eq 5.13 for Clχ , we write the classical rate coefficient as

Clk6¼ðεÞ ¼ 2
ffiffiffi
2

p
π � μ�1=2ðC 6¼

6 Þ1=3ðE6¼� Þ1=6 � ClXðεÞ ð7.2Þ
where ε = E/E*

6¼. The conditions ε > 1 and ε < 1 determine
whether capture occurs mainly in the field of the isotropic
(≈R�6) or anisotropic (≈R�3) interaction (for the 00 manifold,
only the former is true since E*

6¼ = 0). With decreasing energy,
Clk01(ε) first decreases and then, passing the point ε = 1, begins
to increase. On this way, Clk01 comes close to (or crosses) the rate
coefficient FWkTQK which reads as

FWkTQKðεÞ ¼ 2πpR01
6

μ

½1�expð�FWRðδÞδ ffiffiffi
ε

p Þ�
2δ

ffiffiffi
ε

p ð7.3Þ

At this point, k01 switches from Clk to FWkTQK, and the
transition, according to eq 7.3, occurs at the energy E ≈ Ec

01 =
E*
6¼/FWR2(δ)δ2. Whether the quantum regime with decreasing

energy is reached on the decreasing or increasing branch
of the classical rate Clk01 depends on the value of the product
FWR(δ)δ. For FWR(δ)δ < 1 it occurs on the decreasing branch,
and for FWR(δ)δ > 1, on the increasing branch. With a further
decease of the energy, k(E) tends to its Bethe limit, given
approximately as

Bk01 ¼ πpR01
6

μ
RðδÞ � B�FWk01 ¼ πpR01

6

μ
FWRðδÞ ð7.4Þ

To see the explicit dependence of B�FWk01 on interaction
parameters, as suggested in part I,1 we can use an approximate
expression for FWR(δ) which reasonably well extrapolates be-
tween the exact limits at δ = 0 and δ . 1 from eq 5.3:

FWRðδÞ � 4fð0:479Þ6 þ ð2δ= ffiffiffi
3

p Þ6g1=6 ð7.5Þ
Collecting the factors of eq 7.4, we get

B�FWk01 � 4π ð0:479Þ6 2C01
6 p2

μ3

 !3=2

þ 2d2

3
ffiffiffi
3

p
p

 !6
8<
:

9=
;

1=6

ð7.6Þ
For the description of different regimes of the capture one

may use three characteristic energies: the rotational constant
of the diatom (in energy units), B; the energy E = E*

01 that defines
the minimum of the classical capture rate, E*

01 = d4/36C6
10; and

the energy E = Ec that defines the onset of the quantum
regime in the capture, Ec

01 = E*
6¼/FWR2(δ)δ2 = E6

01/2FWR2(δ).
The conditions imposed on the value of the collision energy in
the different regimes are as follows: (i) E < B, applicability
of the PR approximation; (ii) E > E*

01, capture mainly in
the field of the isotropic R�6 attraction, positive energy
dependence of the rate coefficient; (iii) E < E*

01, capture mainly
in the field of the anisotropic R�3 attraction, negative energy
dependence of the rate coefficient; (iv) E > Ec

01, classical capture,
positive or negative energy dependence of the rate coefficient;
(v) E < Ec

01, quantum capture, weak negative energy dependence
of the rate coefficient leading to the Bethe limit at E = 0.

The qualitative features of the rate coefficient can be illustrated
by a plot of the scaled rate coefficientK(ε,δ) above the plane of
the coordinates ε,δ. The quantity K(ε,δ) is defined as ClX(ε) in
the classical region, while in the quantum region it has the Bethe

limitK(ε,δ)εf0 =
BX(δ) that is obtained from the comparison of

eq 5.6 and eq 5.13. Two sections of the surfaceK(ε,δ), BX(δ) vs
δ and ClX(ε) vs ε, are shown in Figures 1 and 2, respectively. This
allows one to qualitatively construct a set of level lines ofK(ε,δ)
that cover three regions with different energy dependence (ED)
of the rate coefficients (classical positive ED, CPED, classical
negative ED, CNED, and quantum negative ED, QNED); see
Figure 13. The value ofK(ε,δ) on a particular level line is marked
at the boundary (the heavy line) between the classical and
quantum regions defined by the equation ε = R2(δ)δ2. The
vertical δ-independent level lines in the CPED and CNED
regions are those for the function X(ε) (the minimum value of
X(ε) is put here as 1, instead of the accurate value 1.018). The
straight slanted level lines in the QNED region, which simulate
slightly curved accurate lines, were drawn by joining points at the
ordinate axis (calculated from eq 6.3) with appropriate points at
the quantum-classical boundary. The color of the strips of the
table-of-contents figure, encompassed by two neighboring level
lines, changes, in the rainbow sequence, from dark blue around
the minimum (about 1 in the classical region and 3/2 in the
quantum region) to red (left upper corner) for high values of
K(ε,δ). Two examples for capture events are discussed in the
following. These examples are marked by arrows which start
to the left from two vertical lines that correspond to the ratios
εB = B/E*

01 for the molecules CO and HF.
We now consider in more detail two examples, capture

in the encounters CO þ CO and HF þ HF. These two capture
events represent extremes in the row of dipole molecules with
respect to the values of the parameter δ that affects capture in the
resonance manifold of channels. The relevant parameters for
these, and also for “intermediate” systems such as HCl�HCl and
HBr�HBr, are compiled in Tables 1�3 (see also the two arrows
in Figure 13 for CO�CO and HF�HF collisions which bracket
the respective arrows for HCl�HCl and HBr�HBr). For CO,
the dipole moment is very small, and the dipole�dipole correc-
tion to the dispersion interaction is negligible. For 00 capture and

Figure 13. Equal-K lines of the scaled rate coefficients K(ε,δ) above
the plane of the coordinates ε,δ. The heavy solid line separates the
classical and quantal regions. Encircled numbers mark the values of
K(ε,δ). Two cases discussed (CO þ CO and HF þ HF capture)
correspond to the regions in the direction of the arrows. (See text for
more details.)

http://pubs.acs.org/action/showImage?doi=10.1021/jp112098a&iName=master.img-013.jpg&w=240&h=194
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energies E noticeably below BCO = 2.77 K, e.g., decreasing from
tenths of kelvin (case i), the classical rate coefficient decreases
with energy (case ii) until E = Ec

00 = 8 � 10�4 K. After that, it
slowly increases (case v), approaching the Bethe limit Bk00-
(CO�CO) = 6.62 � 10�11 cm3 s�1. For 01 capture, with the
parameter δ being rather small, δ = 0.346, the classical rate coefficient
also decreases with energy (case ii) down to E* =
3.5 � 10�4 K. However, before reaching the turnover energy E*

01 =
3.5� 10�4 K, at an energy equal to Ec

01 = 6.3� 10�4 K the quantum
regime sets on. Therefore, the classical increase for E < E*

01 does not
occur at all, and it is replacedby themuchweaker quantum increase for
E < Ec

01 (case iv) that leads to the Bethe limit which is only slightly
larger (by about 13%) than that for unpolar molecules.

For HF, the dipole moment is quite large, and the dipole�
dipole correction to the dispersion interaction exceeds the
latter. For 00 capture, for energies E noticeably below
BHF = 30.16 K, e.g., decreasing from 1 K (case i), the
classical rate coefficient decreases with energy (case ii) until

E = Ec
00(HF�HF) = 5.18 � 10�4 K which is slightly below

Ec
00(CO�CO) due to a larger value of R6

00. For 01 capture, the
parameter δ is quite large, δ = 53.8. The energy E*

01 is about 4
orders of magnitude higher than the respective value for
CO�CO and only four times smaller than BHF = 30.16 K.
Therefore, for energies E below, e.g., 1 K (case i), the rate
coefficient increases with decreasing energy (case ii) until
E reaches Ec

01 which is substantially lower than its counterpart
for CO�CO capture. The physical reason for the relation
Ec
01(HF�HF) , Ec

01(CO�CO) in a situation where the
reduced masses and dispersion coefficients are quite compar-
able is due to the fact that the WKB conditions for a gradual
interaction (R�3 forHF�HF) break down at lower energies than for
a steeper interaction (R�6 for CO�CO). When E becomes lower
than Ec

01, the classical increase of the rate coefficient, as E�1/6,
changes into amuchweaker quantum increase that leads to theBethe
limit at E = 0. The latter is larger than for unpolar molecules by the
factor (C6

01/C6)
1/4�[R(δ)/R(0)] = 169.

Table 1. Molecular Parameters Used in the Calculation

parametersa CO HF HCl HBr

mass of molecule 28 amu 20 amu 36 amu 81 amu

μ 14.0 amu = 2.55 � 104 au 10.0 amu = 1.82 � 104 au 18.0 amu = 3.28 � 104 au 40.5 amu = 7.38 � 104 au

d 0.1098 D = 1.098 � 10�19

esu cm = 0.0432 au

1.826 D = 1.826 � 10�18

esu cm = 0.718 au

1.109 D = 1.109 � 10�18

esu cm = 0.436 au

0.8272 D = 8.272 � 10�19

esu cm = 0.325 au

B 1.925 cm�1 = 2.77 K

= 8.77 � 10�6 au

20.96 cm�1 = 30.16 K

= 9.55 � 10�5 au

10.59 cm�1 = 15.24 K

= 4.83 � 10�5 au

8.465 cm�1 = 12.18 K

= 3.86 � 10�5 a.u

C6
b 87.0 au = 83.3

� 10�60 erg cm6

110 au = 105

� 10�60 erg cm6

110 au = 105

� 10�60 erg cm6

184 au = 176

� 10�60 erg cm6

a μ = reduced mass; d = dipole moment; B = rotation constant; C6 = dispersion coefficient.
bComment: The values of the dispersion coefficient for CO,

HCl, and HBr are taken from ref 17; this parameter for HF is assumed to be the same as that for HCl.

Table 2. Parameters That Enter into the Rate Coefficients for 00 Capture

parametersa CO HF HCl HBr

γ00 7.60 � 10�4 4.22 1.13 0.262

effective C6
00, au 87.1 574 235 232

R6
00, a0 45.9 67.6 62.6 76.5

E6
00, K 5.87 � 10�3 3.78 � 10�3 2.45 � 10�3 7.30 � 10�4

E00
quant, K 8.03 � 10�4 5.18 � 10�4 3.35 � 10�4 1.00 � 10�4

Bk00, cm3 s�1 6.62 � 10�11 1.37 � 10�10 7.02 � 10�11 3.81 � 10�11

a C6 = dispersion coefficient; Bk00 = Bethe limit..

Table 3. Parameters That Enter into the Rate Coefficients for 01 Capture

parametersa CO HF HCl HBr

δ 0.346 53.8 36.2 35.0

γ01 3.38 � 10�4 1.87 0.504 0.116

effective C6
01, au 87.0 316 165 205

R6
01, a0 45.9 58.3 57.4 74.2

E6
01, K 5.87 � 10�3 5.10 � 10�3 2.92 � 10�3 7.76 � 10�4

Eclass, K 3.51 � 10�4 7.37 1.92 0.476

E01
quant, K 6.30 � 10�4 4.14 � 10�8 5.22 � 10�8 1.48 � 10�8

Bethe limit Bk01(δ), cm3s�1 7.47 � 10�11 1.527 � 10�8 5.63 � 10�9 3.13 � 10�9

η = Bk01(δ)/Bk01(0) 1.13 169 97.0 87.0
a C6 = dispersion coefficient; Bk00 = Bethe limit.
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8. CONCLUSIONS

One can draw the following conclusions from the given
discussion.

(i) The capture of dipoles in the ground nonresonant state
(j1 = 0, j2 = 0) occurs in a manifold of decoupled channels in the
field of attractive dispersion and second-order dipole�dipole
potentials. Here, quantum effects in the capture are due to
adiabatic tunneling and overbarrier reflection during the passage
of effective centrifugal barriers. The s-wave quantum capture
leads to a finite limiting zero-energy rate coefficient, in contrast to
a vanishing classical rate. Supplemented with classical rate
coefficients for higher energies, the s-wave capture contribution
satisfactorily describes the energy dependence of the rate across
the whole energy range.

(ii) The capture of dipoles in the first excited resonant state
(j1 = 0, 1, j2 = 1, 0) occurs in amanifold of coupled channels in the
field of the attractive/repulsive first-order dipole�dipole inter-
action potentials superimposed onto the attractive dispersion
and second-order dipole�dipole potentials. Here, the quantum
effects are due to a locking of the intrinsic angular momentum of
the rotating molecules to the collision axis and to nonadiabatic
tunneling and overbarrier reflection in the locking region. The
“s-wave” (i.e., s-wave type) quantum capture leads to a finite
limiting zero-energy rate coefficient, in contrast to the diverging
classical rate. Supplemented with classical adiabatic channel rate
coefficients for higher energies, the s-wave capture contribution
satisfactorily describes the energy dependence of the rate across
the whole energy range.

(iii) The analytical approximations of part I of this work1

satisfactorily reproduce the close-coupling results. For E < Ec, the
accurate quantum rate coefficients for rotationally unpolarized
colliders are dominated by s-wave capture, which in the limit of
Ef 0 with accuracy better than 10% is described by the analytical
flywheel approximation. The slight overestimation of the accurate
rate by FWapproach is due to a coupling effect, in particular to the
neglect of the diagonal positive correction to the attractive FW
interaction that comes from the nonadiabatic radial coupling.16

For E > Ec, the accurate quantum rate coefficient quite quickly
converges to its quantum-classical counterpart.

(iv) For the capture of dipoles in the resonant state, the
standard adiabatic channel (or coupled state) method is inade-
quate for a calculation of the rate coefficient at energies below
about Ec.

(v) Two given examples, CO þ CO and HF þ HF capture,
illustrate a wide range of conditions that can occur in the capture
of two identical dipolar diatomic molecules, one of which is
rotationally excited. The three regions in Figure 13, CPEN,
CNED, andQNED, correspond to different energy dependences
(ED) of the rate coefficients (classical positive ED, classical
negative ED, and quantum negative ED), and the level lines
qualitatively characterize the ED of the rate coefficient.

(vi) The results obtained apply as well to the transient for-
mation of molecular species from two atoms, interacting via
resonance dipole�dipole interaction, at very low collision en-
ergy. In a way, this represents a kind of a quantum reflec-
tion model such as discussed for van der Waals interactions
in ref 18.
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’GLOSSARY OF TERMS

Abbreviations:
AC adiabatic channel
C cociolis
CC close coupling
CS coupled states
Cl classical
CPED classical positive energy dependence
CNED classical negative energy dependence
EAC effective adiabatic channel
ED energy dependence
FW fly wheel
PR perturbed rotor
QC quantum-classical
QNED quantum negative energy dependence
TQK Troe�Quack�Klots

Probabilities (Partial Rate Coefficients):
PJ,I,p(χJ,I,p)
cumulative capture probabilities (partial rate coefficients)
Pn,I
J,p(χn,I

J,p) capture probability (partial rate coefficients) in the jnJI
representation

PI
J,p(χI

J,p) capture probability (partial rate coefficients) in the jlJ
representation
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