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Abstract

The pure electric field level-crossing of mF Zeeman sublevels of hyperfine F levels at two-step laser excitation is described theoretically
and studied experimentally for the nD3/2 states in Cs with n = 7, 9 and 10, by applying a diode laser in the first 6S1/2! 6P3/2 step and a
diode or dye laser for the second 6P3/2! nD3/2 step. Level-crossing resonance signals are observed in the nD3/2! 6P1/2 fluorescence. A
theoretical model is presented to describe quantitatively the resonance signals by correlation analysis of the optical Bloch equations in the
case when an atom simultaneously interacts with two laser fields in the presence of an external dc electric field. The simulations describe
well the experimental signals. The tensor polarizabilities a2 (in a3

0) are determined to be 7.45(20) · 104 for the 7D3/2 state and
1.183(35) · 106 for the 9D3/2 state; the electric field calibration is based on measurements of the 10D3/2 state, for which a2 is well estab-
lished. The a2 value for the 7D3/2 state differs by ca. 15% from the existing experimentally measured value.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The first experimental demonstration of crossings of
certain magnetic (mF) components of hyperfine structure
(hfs) levels F at non-zero electric field E was reported in
1966 in a paper by Khadjavi et al. [1]. In that work, the
authors observed the Stark effect in the second excited
state of the alkali metal atoms 85,87Rb (6P3/2) and 133Cs
(7P3/2). Using resonant excitation from a gas-discharge
lamp, they observed resonances at the level-crossing posi-
tions in the fluorescence signals from single-step broad-
line light excitation. Such a method of Stark level-crossing
spectroscopy was applied by the same authors to deter-
mine experimentally the tensor polarizabilities a2 in these
states, as well as to determine a2 in 39K(5P3/2) [2,3]. Later
on, however, it became more popular to vary the mag-
netic field in the presence of a constant electric field. This
way of inducing level-crossings was preferred, perhaps
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because magnetic fields were easier to produce and con-
trol. Such techniques were used to measure the tensor
polarizabilities a2 of alkali atoms by Svanberg and co-
authors (see [4–7] and references therein). In particular,
this method was used in a two-step excitation with a
radio-frequency discharge lamp and a narrow-width dye
laser [5–7]. The development of narrow line-width lasers
enabled Stark shifts to be measured directly [8] by scan-
ning the electric field at a fixed laser frequency. Both
methods made it possible to determine a large number
of excited S and D state scalar and tensor polarizabilities
of Rb and Cs, achieving an accuracy of some 5% (see [9]
for a review). The use of electro-optically modulated laser
radiation allowed Xia and co-authors [10] to measure the
scalar and tensor polarizabilities of (10–13)D3/2,5/2 states
of Cs with an accuracy better than 0.3%, which is better
than for any other atomic state.

Thus, to our knowledge the extant literature contains no
experimental observation of purely electric field level-cross-
ing resonances of mF hfs levels at two-step, or any multi-
step, laser excitation. At the same time, we are not aware

mailto:mauzins@latnet.lv


Fig. 1. Hyperfine level splitting diagram in an external electric field for the
7D3/2 (a), 9D3/2 (b), and 10D3/2 (c) states of Cs, with zero energy
corresponding to the fine structure level energy.
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of any detailed theoretical descriptions of the expected sig-
nals at two-step excitation in the literature.

In this paper, we (i) present experimental measurements
of Stark effect induced level-crossing resonances at two-
step laser excitation; (ii) offer a detailed theoretical descrip-
tion based on the optical Bloch equations for radiation
fields with finite spectral widths [11]; and (iii) report exper-
imentally determined tensor polarizabilities a2 for the nD3/2

states of Cs atoms, with n = 7 and 9. The 7D3/2 state is of
particular interest because of a considerable discrepancy
between the only known measured value for the polariz-
ability a2 [12] and its theoretical estimate given in [13]. At
the same time, the a2 value for the 10D3/2 Cs state is known
with unprecedented accuracy of 0.1% [10] and remarkably
agrees, within 0.25%, with its calculated counterpart in
[13]. As a result, we are able to use the signal from the
10D3/2 state to calibrate the electric field produced in our
Cs cell. A measurement of both states in the same experi-
mental arrangement allows us to measure the polarizability
in the 7D3/2 state as well as in the 9D3/2 state with greater
confidence. Furthermore, Stark effect studies in highly
excited Cs states are particularly interesting, as Cs might
be useful as a tracer gas to image electric fields [14] at room
temperature, or even lower temperatures.

2. Experiment

2.1. Method

In our experiment, we detect the resonance signals
caused by hfs level-crossings in an external dc electric field
when several mF Zeeman sublevels of hfs levels are coher-
ently excited. Fig. 1 illustrates the crossing points of the
hyperfine sublevels in the (7,9,10)D3/2 states. As can be
seen in this figure, when there is no external electric field,
all mF Zeeman sublevels that belong to the same hyperfine
level F are excited coherently, which gives rise to a char-
acteristic spatial distribution of linearly polarized radia-
tion. When the electric field is applied, the coherence is
removed, and so the spatial distribution of fluorescence
light changes. At the level-crossing points, the coherence
is partially restored, which also partially restores the spa-
tial distribution of fluorescence light characteristic of
coherent excitation.

The stepwise two-laser excitation 6S1/2! 6P3/2! nD3/2

of the 7D3/2, 9D3/2 and 10D3/2 levels of atomic cesium is
followed by the nD3/2! 6P1/2 fluorescence, as shown in
Fig. 2. The fluorescence intensity signal as a function of
the electric field strength is expected to contain resonances
at positions corresponding to the mF level-crossings. To
predict the resonance positions, we compute the energy
level splitting diagram in the presence of an electric field
for hfs levels in the nD3/2 states of Cs under study (see
Fig. 1) using a2 values calculated by Wijngaarden and Li
[13]. The results shown in Fig. 1 are obtained by diagonal-
izing the hfs and Stark interaction Hamiltonian written in
an uncoupled basis [15]. Through the Stark effect, the elec-
tric field and the polarizability enter into the Hamiltonian.
The positions of the level crossing points thus depend on
and make it possible to measure the polarizability.

The values for the hfs constant A are taken from the
review of Arimondo and collaborators [16], who report
the following values: A = 7.4(2) MHz for 7D3/2 as measured
in [7], A = 2.35(4) MHz for 9D3/2, and A = 1.51(2) MHz for
10D3/2 as measured in [17,18]. To our knowledge, no other



Fig. 2. Cesium energy-level scheme with hfs level spacings shown on the
right of the figure.
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experimental data of hfs constants for these states of Cs are
present in the literature. Values for the hfs constant B are
not reported and are assumed to be small.

As seen in Fig. 1, two crossings are predicted in the
experimentally available electric field range: one crossing
within the F = 4 manifold with DmF = ±1 and ±2 and a
second DmF = ±2 crossing between the mF = ±5 sublevels
of the F = 5 level and the mF = ±3 sublevel of the F = 4
level. When the atoms are excited with linearly polarized
light, and linearly polarized fluorescence light is observed,
resonances are expected at the electric field values corre-
sponding the level-crossings with DmF = ±2 [19,20].

2.2. Experimental details

The schematic diagram of the experiment is depicted in
Fig. 3. In our experiment, we use cesium vapor contained
in a sealed glass cell at room temperature. We apply an
electric field up to E ¼ 2400 V=cm via transparent Stark
electrodes located inside the cell. These transparent elec-
trodes make it possible to observe the fluorescence light
in the direction of the electric field. The electrodes are sep-
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Fig. 3. Schematic diagram of the experiment. The electrodes produce an
electric field along the z-axis, which is also parallel to the polarization
vector of the first laser E1 and the observation direction. The observed LIF
intensity Ix or Iy polarization direction can be selected by linear polarizers.
arated by two ceramic spacer-rods with a diameter of
2.5 mm. The transparent electrodes consist of two glass
plates, on which indium–tin–oxide vapor has been depos-
ited. High voltage is applied to these electrodes via two
metal rods that protrude through the glass cell wall.
High-temperature conducting silver paste provides a con-
tact between the electrodes and the metal rods.

We reach the 7D3/2, 9D3/2, and 10D3/2 states of cesium
using two-step laser excitation (see Fig. 2). In the first step,
852.1 nm radiation of the diode laser (LD-0850-100sm
laser diode) excites the 6P3/2 state. This first laser is linearly
polarized with polarization vector E1 along the external dc
electric field E direction (Ekz). Radiation from a second
laser, polarized as E2ky, travels in a counter-propagating
direction to induce either the 6P3/2! 7D3/2 transition at
698.4 nm, the 6P3/2! 9D3/2 transition at 584.8 nm, or
the 6P3/2! 10D3/2 transition at 563.7 nm. For the
6P3/2! 7D3/2 transition, we use a Hitachi HL6738MG
laser diode; for the other transitions, we use a Coherent
CR699-21 ring dye laser with Rhodamine 6G dye. A Spec-
tra-Physics 171 argon ion laser operating at the 514.5 nm
line pumps the dye laser. We observe the laser induced fluo-
rescence (LIF) nD3/2! 6P1/2 at 672.3 nm, 566.4 nm, and
546.6 nm, for n = 7, 9, and 10, respectively. Before being
observed, the LIF passes through a linear polarizer. We
observe the LIF along the z-axis. This geometry allows
us to study the LIF intensity components Ix and Iy (see
Fig. 3), which are polarized perpendicular and parallel to
E2, respectively.

In order to excite the cesium atoms from the ground
state hyperfine level with total angular momentum quan-
tum number F = 4 to all allowed 6P3/2 state hyperfine
levels F = 3,4,5, the first laser operates in a multi-mode
regime. We find that when this laser is operating in a
multi-mode regime, the overall fluorescence intensity as
observed by the CCD camera is more stable in time.
We suspect that in the multi-mode regime we are able
to take advantage of some broader laser side-bands that
lead to more stable signals [21]. When using the diode
laser to excite the second transition, we apply a 10–
20 Hz saw-tooth signal to the piezo-electric crystal
mounted to its grating in order to jitter its output fre-
quency over a range of 1.2 GHz. When using the dye
laser to excite the second transition, we operate in a sin-
gle-mode regime. At the beginning of each measurement,
we adjust the frequencies of the lasers in order to max-
imize the observed fluorescence intensities. To avoid
optical pumping, neutral density filters are used to
reduce the dye laser intensity. The power of the diode
and dye lasers do not exceed 3 and 10 mW, respectively.
The laser beams have a diameter of approximately
1 mm.

A two-lens system focuses the LIF onto the entrance slit
of a model MDR-3 monochromator with 2.6 nm/mm
inverse dispersion. The signal is detected by a model
FEU-79 photomultiplier tube, which operates in photon
counting mode. The intensities Ix and Iy of the LIF are



Fig. 5. Fluorescence vs. electric field for the 9D3/2 state, zyx geometry (a)
and zyy (b). Dots, measurements; solid line, calculation. The voltage scale
calibration is based on data from Fig. 4.
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recorded as a function of E. During the experiment, the
high voltage between the electrodes is scanned continu-
ously. Photon counts are accumulated during one second
intervals and recorded on a PC together with the electrode
voltage (via a voltage divider). Signals are accumulated
during more than 10 scans of approximately 100 s dura-
tion, binned and averaged.

2.3. Results

The measured relative fluorescence intensity is plotted as
a function of electric field strength in Figs. 4–6. The mea-
sured signals are represented by dots, whereas solid lines
are plotted to represent the results of simulations. The
model on which these simulations are based is described
in Section 3 of this paper. The error bars reflect the statis-
tical variation in each bin after the scans are averaged. We
label the experimental geometry as zyx or zyy: the first let-
ter z denotes the orientation of the polarization of the first
laser E1 (see Fig. 3), the second letter y denotes the orien-
tation of E2, and the third letter x or y denotes the direction
of LIF polarization that we observed.

The measurements for the 10D3/2 state are plotted in
Fig. 4. Since the tensor polarizability a2 for the 10D3/2 state
is known far better than for the other states [10], we use the
data in Fig. 4 to calibrate the voltage. In Fig. 4, the voltage
scale is left uncalibrated to illustrate the precision with
which the electrode spacing was known before calibration.
To simulate the results, we use the hyperfine constant A

and experimentally determined tensor polarizability a2

shown in Table 1. By comparing the position of the second
peak (corresponding to the F = 4 to F = 5 crossing) in our
measured curve with the peak position of the calculated
curve, one can see that the voltage scale should be cor-
rected by 2%.

The results for the 9D3/2 and 7D3/2 states are plotted in
Figs. 5 and 6, respectively. The voltage scales in Figs. 5 and
6 have been adjusted using the scaling factor obtained from
the calibration with the 10D3/2 signal in Fig. 4. The solid
Fig. 4. Fluorescence vs. electric field for the 10D3/2 state, zyx geometry.
Dots, measurement; solid line, calculation. The voltage scale before
calibration is plotted.
lines in Figs. 5 and 6 represent the result of calculations.
In these calculations, we use the hyperfine constants A

from Table 1 and we adjust the tensor polarizabilities a2

so that the peak positions in the simulations and measured
data agree. To illustrate the sensitivity of our method, we
include in Fig. 6 as a dashed line the results of a calculation
using the previously measured a2 value shown in Table 1.

3. Theoretical model

3.1. Outline of the model

In the experiment described above, atoms strongly inter-
act with radiation simultaneously produced by two lasers.
Nonlinear interactions can cause shifts of the magnetic
levels in the laser field [22], and as a result, shifts of the
level-crossing positions. The theoretical description of our
experiment is further complicated by the fact that, in order
to excite coherently magnetic sublevels that are split in an
external field, we use lasers that generate a rather broad
profile of radiation. In this situation, a model that is able
to describe signals quantitatively is essential in order to
analyze the obtained signals and to be able to deduce
atomic constants from these signals.



Fig. 6. Fluorescence vs. electric field for the 7D3/2 state, zyx geometry (a)
and zyy (b). Dots, measurements; solid line, calculation; dashed line,
calculation using the tensor polarizability value from [12]. The voltage
scale calibration is based on data from Fig. 4.
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In the present study, we elaborate such a model on the
basis of earlier work on the rate equations for Zeeman
coherences in the case where atoms are excited by one par-
tially coherent optical field [11].

In this paper, we extend this approach to the case when
an atom interacts with two laser fields simultaneously in
the presence of an external dc electric field E. We assume
that the atomic center of mass moves classically, which
means that the description of the dipole interaction of the
atom with the laser fields can assume that the atom moves
classically and is excited at the internal transitions. In this
case the internal atomic dynamics can be described by the
semiclassical atomic density matrix q, which parametrically
Table 1
Summary of results

Cesium atomic state Hyperfine constant (MHz) Tensor p

This exp

10D3/2 1.51(2) [16] –
9D3/2 2.35(4) [16] 1.183(35
7D3/2 7.4(2) [16] 7.45(20)
depends on the classical coordinates of the atomic center of
mass.

We consider the absorption of the first laser’s radiation
as the atoms are excited from the atomic ground state
denoted by g to the intermediate state denoted by e. Then
a second laser excites the atoms further from the e state to
the final state f. The direct transition g M f is forbidden in
the dipole approximation. In our particular case (see
Fig. 2), the ground state of the Cs atom consists of two
hfs levels Fg = 3 and Fg = 4. Each of these hfs levels in turn
consists of 2Fg + 1 magnetic sublevels, denoted by gi in
what follows. The intermediate state in our experiment is
the 6P3/2 state of the Cs atom. It consists of four hyperfine
levels with Fe = 2,3,4 and 5 and the corresponding number
of magnetic sublevels, denoted as ei. Finally, the atomic
level that is excited by the second laser is the nD3/2 state,
which again consists of hyperfine levels with Ff = 2,3,4
and 5. We denote the magnetic sublevels of these states
as fi.

To simulate the observed signals, we have to take into
account that the external electric field is strong enough to
break partially the hyperfine interaction between electronic
angular momentum of the atom and the nuclear spin. As a
result (see Fig. 1) the magnetic sublevel energies in the
external dc electric field do not depend quadratically on
the electric field strength any more. This dependence can
be obtained only by diagonalizing the full Hamilton
matrix. The partial decoupling of the electronic angular
momentum and nuclear spin also alters the dipole transi-
tion probabilities between the magnetic sublevels of atoms
belonging to different fine structure levels. This decoupling
is taken into account in the simulation of the experimental
signals.

With the above assumptions, we are able to develop a
model, which we describe below, to calculate the observed
level-crossing signals in our experiment.

3.2. Optical Bloch equations

We begin our analysis from the optical Bloch equations
(OBEs) for the density matrix elements qgigj

, qgiej
, qgifj

, qeigj
,

qeiej
, qeif j

, qf igj
, qf iej

, and qf ifj
. In writing OBEs (see for

example [23]),

i�h
oq
ot
¼ ½ bH ; q� þ i�hbRq; ð1Þ

we consider the relaxation bR operator to include spontane-
ous emission and transit relaxation due to the thermal
olarizability a2

eriment (a3
0) Previous experiment (a3

0) Theory (a3
0)

3.4012(36) · 106 [10] 3.41 · 106 [13]
) · 106 1.258(60) · 106 [9] 1.19 · 106 [13]
· 104 6.6(3) · 104 [12] 7.04 · 104 [13]
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motion of atoms into and out of the laser beam. We also
assume that different velocity groups of the thermally mov-
ing atoms do not interact – the density of atoms is suffi-
ciently low. In this case the relaxation matrix is:bRqgigj

¼
X
eiej

Ceiej
gigj

qeiej
� cqgigj

þ kdgi ;gj
;

bRqgiej
¼ �Ce

2
qgiej
� cqgiej

;

bRqgif j
¼ �Cf

2
qgif j
� cqgif j

;

bRqeigj
¼ �Ce

2
qeigj
� cqeigj

;bRqeiej
¼ �Ceqeiej

þ
X
f if j

Cf if j
eiej

qf ifj
� cqeiej

;

bRqeifj
¼ � Ce

2
þ Cf

2

� �
qeif j
� cqeif j

;

bRqf igj
¼ �Cf

2
qf igj
� cqf igj

;

bRqf iej
¼ � Ce

2
þ Cf

2

� �
qf iej
� cqf iej

;

bRqf if j
¼ �Cfqf ifj

� cqf ifj
;

ð2Þ

where c and k are the transit relaxation rates. The quantity
kdgi ;gj

describes the process in which ‘‘fresh’’ atoms are
moving into the laser beam, and c describes the rate at
which atoms are leaving the interaction region. Ce is the
total spontaneous relaxation rate from level e, Cf is the
total spontaneous relaxation rate from level f, Ceiej

gigj

describes the spontaneous relaxation from qeiej
to qgigj

,
Cf if j

eiej
describes the spontaneous relaxation from qf ifj

to
qeiej

. The explicit forms of these rate coefficients are calcu-
lated on the basis of angular momentum algebra and can
be found in [24].

The Hamiltonian bH ¼ bH 0 þ bV includes the unperturbed
atomic Hamiltonian bH 0 and the dipole interaction opera-
tor bV ¼ �bd � EðtÞ, where bd is the electric dipole operator.
The exciting light is described classically by two uncorre-
lated fluctuating electric fields E1 and E2 of definite polar-
izations e1 and e2:

EðtÞ ¼ E1ðtÞ þ E2ðtÞ;
EiðtÞ ¼ eiðtÞei þ e�i ðtÞe�i ;
eiðtÞ ¼ exij j exp �iUiðtÞ � i xi � kxi vð Þt½ �;

ð3Þ

with the center frequency of the radiation spectrum
xi and the fluctuating phase Ui(t). The lineshape of the
exciting light is assumed to be Lorentzian with FWHM
Dxi. Atoms move with definite velocity v, which gives
the shift xi � kxi v in the laser frequency that the atoms
encounter due to the Doppler effect, where kxi is the wave
vector of the exciting light. The minus sign refers to the
laser beam that propagates in the positive direction of
the y-axis (see Fig. 3) and the plus sign to the counter-
propagating laser beam.

Writing OBEs explicitly for the density matrix elements
qij, we obtain:
oqij

ot
¼ � i

�h
½ bH ; qij� þ bRqij

¼ � i

�h
½ bH 0; qij� þ

i

�h
½bd � EðtÞ; qij� þ bRqij

¼ �ixijqij þ
i

�h
EðtÞ

X
k

ðdik � qkj � qik � dkjÞ þ bRqij; ð4Þ

where xij = xi � xj denotes the splitting of the levels i
and j and dik � hijdjki. By choosing the quantization axis
(the z-axis) to be parallel to the static electric field E, all
the explicit dependence of the density matrix on the sta-
tic electric field E is included in the splitting terms xij .
Implicitly, the density matrix depends on the dc electric
field, because this field modifies the dipole transition
matrix elements by partially decoupling the hyperfine
interaction.

In order to simplify the above equation, we do the
following: we neglect possible optical excitations of
neighboring transitions, that is, we neglect the excitation
of the transition g M e (e M f) with the second (first)
laser, which is tuned to the transition e M f (g M e).
Then, in order to eliminate fast oscillations with optical
frequencies xi, we apply to the optical Bloch equations
the rotating wave approximation for multilevel systems
as developed in [25]:

qge ¼ eqgee
i x1�kx1

v

� �
tþiU1ðtÞ ¼ q�eg;

qgf ¼ eqgfe
i x1þx2�kx1

vþkx2
v

� �
tþiU1ðtÞþiU2ðtÞ ¼ q�fg;

qef ¼ eqefe
i x2þkx2

v

� �
tþiU2ðtÞ ¼ q�fe:

ð5Þ
3.3. Laser radiation fluctuations

In the optical Bloch equations we distinguish Zeeman
coherences that correspond to the density matrix elementseqgg, eqee, eqff and optical coherences that correspond to the
density matrix elements eqef , eqfe, eqge, eqeg. As a result we
arrive at a system of stochastic differential equation (4)
with stochastic variables Ui(t). We simplify this system by
applying the ‘‘decorrelation approach’’ [26].

In the experiment we observe signals that are averaged
over time intervals that are large in comparison with the
characteristic phase-fluctuation time of the excitation-light
source. Therefore we need to perform a statistical averag-
ing of the above equations. In order to do that, we solve
the equations for optical coherences and then take a formal
statistical average over the fluctuating phases (for details
see [11]). Additionally we assume that both lasers are
uncorrelated and that optical coherences eqef , eqfe (eqge,eqeg) are independent of the fluctuations of the first (second)
laser, which is tuned to the transition g M e (e M f). Then
we apply the ‘‘decorrelation approximation’’ (see [11] and
references cited therein):

qijðt0Þe�i½UðtÞ�Uðt0Þ�� �
¼ hqijðt0Þi e�i½UðtÞ�Uðt0Þ�� �

: ð6Þ



M. Auzinsh et al. / Optics Communications 264 (2006) 333–341 339
The correlation function he�i½UðtÞ�Uðt0Þ�i is calculated
assuming the ‘‘phase diffusion’’ model of the laser radiation
for the description of the dynamics of the fluctuating phase
[11]. Thus,

e�i½UðtÞ�Uðt0Þ�� �
¼ e�

Dx
2 ðt�t0Þ: ð7Þ

Putting it all together, we arrive at the phase-averaged
OBEs (for simplicity we drop the averaging brackets). In
the case of stationary time-independent excitation we
obtain
qgigj
¼ i

�h
jex1
j

cþ ixgigj

X
ek

dð1Þ�giek
eqek gj

� dð1Þek gj
eqgiek

� 	
þ 1

cþ ixgigj

X
eiej

Ceiej
gigj

qeiej
þ kdgi ;gj

 !
;

eqgiej ¼
i

�h
1

Ce

2
þ cþ Dx1

2

� �
þ i x1 � kx1

vþ xgiej

� �	 ex1



 

X
ek

dð1Þ�giek
qekej
� ex1



 

X
gk

dð1Þ�gkej
qgigk
� ex2



 

X
fk

dð2Þfkej
eqgifk

 !
;

eqgifj ¼
i

�h
1

Cf

2
þ cþ Dx1

2
þ Dx2

2

� �
þ i x1 þ x2 � kx1

vþ kx2
vþ xgifj

� �	X
ek

ex1



 

dð1Þ�giek
eqek f j � ex2



 

dð2Þ�ek fj
eqgiek

� 	
;

eqeigj
¼ i

�h
1

Ce

2
þ cþ Dx1

2

� �
� i x1 � kx1

v� xeigj

� 		 ex1



 

X
gk

dð1Þeigk
qgk gj

� ex1



 

X
ek

dð1Þek gj
qeiek
þ ex2



 

X
fk

dð2Þ�eifk
eqfk gj

 !
;

qeiej
¼ i

�h

ex1



 


ðCe þ cÞ þ ixeiej

X
gk

dð1Þeigk
eqgk ej � dð1Þ�gk ej

eqeigk

� 	
þ i

�h

ex2



 


ðCe þ cÞ þ ixeiej

X
fk

dð2Þ�eifk
eqfk ej � dð2Þfk ej

eqeifk

� 	
þ 1

ðCe þ cÞ þ ixeiej

X
f ifj

Cf ifj
eiej

qf if j
; ð8Þ

eqeif j ¼
i

�h
1

Ce

2
þ Cf

2
þ cþ Dx2

2

� �
þ i x2 þ kx2

vþ xeif j

� �	 ex2



 

X
fk

dð2Þ�eifk
qfk f j
� ex2



 

X
ek

dð2Þ�ek fj
qeiek
þ ex1



 

X
gk

dð1Þeigk
eqgk f j

 !
;

eqf igj
¼ i

�h
1

Cf

2
þ cþ Dx1

2
þ Dx2

2

� �
� i x1 þ x2 � kx1

vþ kx2
v� xf igj

� 		X
ek

ex2



 

dð2Þf iek
eqek gj

� ex1



 

dð1Þek gj
eqf iek

� 	
;

eqf iej ¼
i

�h
1

Ce

2
þ Cf

2
þ cþ Dx2

2

� �
� i x2 þ kx2

v� xf iej

� � ex2



 

X
ek

dð2Þf iek
qekej
� ex2



 

X
fk

dð2Þfk ej
qf ifk
� ex1



 

X
gk

dð1Þ�gk ej
eqf igk

 !
;

qf if j
¼ i

�h

ex2



 


ðCf þ cÞ þ ixf if j

X
ek

dð2Þf iek
eqek fj � dð2Þ�ek f j

eqf iek

� 	
:

We solve the above system of equations in order to sim-
ulate the observed signals. When we calculate the density
matrix for the final state, we obtain the fluorescence inten-
sities with a specific polarization along the unit vector e as
[24,27,28]:

IðeÞ ¼ eI 0

X
gi;f i;f j

dðobÞ�
gifj

dðobÞ
eigi

qf if j
; ð9Þ

where eI0 is a proportionality coefficient and the matrix ele-
ment dðobÞ

gifj
¼ hgijd � ejf ji contains the polarization vector e

of the light which is detected, i.e. along the x- or y-axis.
4. Analysis and discussion

We use the theoretical model discussed above to simu-
late our experiment, and the results of the simulations are
plotted together with the results of our measurements in
Figs. 4–6 as described in Section 2. Since the precise shape
of the level-crossing signal depends on various parameters
that are beyond our ability to control precisely, these
parameters are adjusted in the calculation. The parameters
that we adjust are the Rabi frequencies of the transitions,
which correspond to the intensity of the laser radiation in
the experiment, the laser radiation spectral widths, and
the detuning of the laser radiation relative to the exact
transition frequencies. In addition, the background is left
as an adjustable parameter. The generally good agreement
between the calculation and the measurement validate the
theoretical approach described in Section 3. The disagree-
ments at electric field values far above and below the
level-crossing positions can be explained by the fact that
the signals are very sensitive to the laser detuning, which
we are unable to control very precisely.
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The positions of the resonances depend on the points
where energy levels cross (see Fig. 1). These, in turn,
depend on the values of the hyperfine constants A and B,
and on the tensor polarizability a2. In principle, these
crossing points could be shifted by the ac Stark effect.
However, the ac Stark effect is taken into account in our
theoretical model. Our simulations show that at the laser
intensities and laser line-width at which we are working,
the ac Stark shift is considerably smaller than the reso-
nance widths and thus does not impact our measurements.

We take the hyperfine constants to be sufficiently well
known (see the review by Arimondo and collaborators
[16]) to allow us to use our results to make a new measure-
ment of the tensor polarizabilities of the 9D3/2 and 7D3/2

states of cesium. Our results are summarized in Table 1
and compared with the previous measurements of Fredrik-
son and Svanberg [9] and of Wessel and Cooper [12], and
with the theoretical calculations of a2 of Wijngaarden
and Li [13]. We estimate the accuracy of our value for a2

based on the reproducibility of several measurements and
account for the uncertainty of the hyperfine constant A

and of the tensor polarizability a2 of the 10D3/2 state, on
which our electric field calibration is based. Furthermore,
we include the error in the measurements of the polarizabil-
ities of the 7D3/2 and 9D3/2 states introduced by the
reported uncertainties in their respective hyperfine con-
stants, A. The largest contributions to our error are the
uncertainties in the hyperfine constants and in the electric
field calibration. These two contributions to the error are
of comparable magnitude.

Our accuracy is competitive or slightly higher than those
of previously reported measurements of the tensor polariz-
abilities for these atomic states. Our results are consistent
with the theoretical predictions for a2 of [13] for the
9D3/2 state as well as with the previous measurement of
[9]. For the 7D3/2 state, our measurements indicate a value
for a2 that is higher than both the previous measurement of
Wessel and Cooper [12] and the theoretical prediction of
[13].

5. Concluding remarks

The method of detecting pure electric field induced level-
crossing signals of mF Zeeman sublevels of the hyperfine F

levels at two-step laser excitation has been applied to deter-
mine experimentally the tensor polarizabilities of highly
excited atomic states. Conventional laser sources, including
diode lasers, with rather broad line contours were suffi-
cient. In the case of crossings between different F sublevels
with DmF = ±2, the resonance peaks were sufficiently sharp
to enable accurate determination of the peak position. At
the same time, the fluorescence intensity behavior within
a broader electric field range, including additional cross-
ings, together with reliable signal simulations, enhanced
the accuracy of the technique.

For this purpose an adequate theoretical description has
been developed by extending an approach previously
applied to two-level systems [11] to the case of a three-level
system. A significant simplification of the optical Bloch
equations has been achieved by statistically averaging over
the fluctuating phases and applying the ‘‘decorrelation
approximation’’. Though the problem was more cumber-
some with more parameters to be considered, it has
allowed us to describe satisfactorily the observed signals.
What is more, moderate computation times could be
achieved by replacing the Doppler distribution with a
group of atoms moving at a definite velocity.

The measured tensor polarizability for the higher-n
9D3/2 state (see Table 1) agreed within experimental error
with previously measured and calculated values. At the
same time the present measured tensor polarizability for
the lower-n 7D3/2 state differed from the previously mea-
sured experimental value [12] by ca. 15% while the theoret-
ical prediction of [13] was lower than our measured value
by some 5%.

To increase the accuracy and reliability of experimen-
tally measured tensor polarizabilities, it was useful to use
the calibration with respect to a level with well established
polarizability value. This approach substantially dimin-
ished possible errors in the determination of external elec-
tric field values.

For the 7D3/2 and 9D3/2 states under study, the accuracy
of existing hfs constants limited the accuracy of the tensor
polarizability measurement which could be achieved by
applying electric field induced level-crossing spectroscopy.
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