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Within the general axially nonadiabatic channel approach described in Paper I of this series [M.
Auzinsh, E. I. Dashevskaya, I. Litvin, E. E. Nikitin, and J. Troe, J. Chem. Phys. 139, 084311 (2013)],
the present article analyzes the simultaneous manifestation of electrostatic and gyroscopic interac-
tions in the quantum capture of dipolar polarizable symmetric top molecules by ions. As a demon-
stration, the rate coefficients for capture of CH3D and CD3H by H+, D+, and H3

+ are calculated.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4821589]

I. INTRODUCTION

In Paper I1 of this series we have presented a general axi-
ally nonadiabatic channel treatment of the capture of charged
particles by dipolar polarizable symmetric top molecules with
the aim to reveal quantum effects in the collision dynam-
ics. In general, these effects are related to the discrete na-
ture of the intrinsic, orbital, and total angular momenta,
to the quantum character of passage of collision partners
across effective potential barriers and drops, and to the inter-
play of two types of anisotropic interactions, the gyroscopic
(Coriolis) and the electrostatic ones. The latter feature, in
principle, leads to a coupling of capture channels. In the
calculation of capture cross sections or rate coefficients,
however, this coupling can be ignored provided that the
reorientation of the intrinsic angular momenta from the space-
fixed axis onto the body-fixed axis occurs at larger inter-
fragment distances than those essential for capture. This is
the case when the interaction with increasing intermolecu-
lar distance falls off faster than the centrifugal potential (and
the Coriolis interaction), thus permitting the use of the stan-
dard adiabatic channel treatment of Refs. 2–4. An exten-
sion of this treatment to very low collision energies, where
a small number of partial waves contribute to the capture, was
done for anisotropic charge-induced dipole interaction,5 res-
onance dipole-dipole interaction,6, 7 and charge-quadrupole
interaction.8 In all these cases, the energy-dependent capture
rate coefficient approaches a constant value at zero-energy,
i.e., it conforms with the Bethe law.9

For an ion and a dipolar molecule possessing a non-
zero average dipole moment in a given rotational state, the
first-order charge-dipole interaction falls off as the centrifu-
gal interaction. This results in a divergence of the capture
rate coefficient in the zero-energy limit, i.e., in a violation of
the Bethe law. Here, the quantum effects mentioned above
are supplemented by the partial locking of the intrinsic an-

a)E-mail: shoff@gwdg.de

gular momentum j to the collision axis and the interplay of
charge-dipole (electrostatic) and Coriolis (gyroscopic) inter-
actions. It was suggested in Ref. 10 that a physical system,
for which all quantum effects show up, is given by the cap-
ture of isotopically substituted methane molecules by ions.
This work further pursues this point on the basis of the general
properties of axially nonadiabatic (ANC) capture rate coeffi-
cients and it presents calculations of energy- and temperature-
dependent rate coefficients. We concentrate here on the low
energy/temperature collision regime, when only few partial
waves contribute to the capture such that our results bridge
the gap between the fly-wheel limit (single-wave capture and
very small dipole moments) and the classical adiabatic chan-
nel limit (many-wave capture and large dipole moments).

The plan of the paper is as follows. In Sec. II we de-
fine dimensionless scaled parameters that control the cap-
ture dynamics. Section III provides a general discussion of
energy- and temperature-dependent capture rate coefficients
for symmetric tops with small dipole moments. Section IV
contains a qualitative discussion of K-doubling effects in the
capture. Section V presents calculations for capture of CH3D
and CD3H molecules by a series of ions. Section VI concludes
the paper.

II. KEY PARAMETERS RELEVANT FOR CAPTURE

Molecular parameters that govern the capture dynamics
of polarizable dipolar symmetric top rotors by ions in the
adiabatic channel weak-field approximation are the relative
collision energy E (or the translational temperature T), the ro-
tational state j, k of the top, the reduced mass of the collid-
ing partners μ, the charge of the ion q, the polarizability α,
and the dipole moment μD of the neutral top. Combination of
these parameters into two dimensionless quantities defines a
reduced collision energy ε (or reduced temperature θ ) and a
reduced dipole moment δ:

ε = E/EL and θ = kBT/EL with EL = ¯4/μ2q2α (2.1)
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and

δ = qμμ̄D/¯2 with μ̄D = μDk/
√

j (j + 1). (2.2)

ANC capture rate coefficients are scaled with respect to
the Langevin rate coefficient kLang = 2πq

√
α/μ. For a top

with the rotational quantum number j, then they are expressed
either through ε and δ (denoted by ANCχ (j)(ε, δ)) or through θ

and δ (denoted by ANCχ̄ (j )(θ, δ)).
In what follows we discuss the capture of a symmetric top

of structure XY3Y′ that originates from a spherical top XY4

by substitution of the atom Y by an isotope Y′. As discussed
earlier,10 the nonzero dipole moment of XY3Y′ in its ground
vibrational state is due to the difference in the mean dipole
moments of the XY and XY′ bonds. Qualitatively, this differ-
ence arises from different mean lengths of the bonds through
anharmonicity of the vibrational motion in the ground vibra-
tional state. As outlined in Ref. 10 for a Morse model of the
isolated XY bond of length r (with conventional Morse pa-
rameters re, β, D) and a small-amplitude frequency ωe, the
dipole moment μD of the XY3Y′ top in its ground vibrational
state is proportional to the difference |ωe − ω′

e| of the fre-
quencies of the XY and XY′ Morse oscillators. This obser-
vation allows one to establish a qualitative dependence of the
parameter δ on the reduced mass μ of the colliding partners
XY3Y′ and Z+ and the reduced masses m and m′ of the XY
and XY′ oscillators:

δ ∝ μ

∣∣∣∣ 1√
m

− 1√
m′

∣∣∣∣ . (2.3)

With different X, Y, Y′, Z+ moieties, the first factor of the
r.h.s. of Eq. (2.3) can vary from about unity (when Z+ = H+)
to values markedly exceeding unity (when Z+ is much heavier
than H+), while the second factor may decrease from about
unity (when Y = H and Y′ = D) to very small values (when
Y and Y′ are much heavier than H and D). The interplay of
these two trends results in a wide range of possible values of
δ, including those for which interesting quantum effects in the
capture are expected. It should be mentioned that the crude
Morse model of independent bonds yields the correct order of
magnitude of μD for CH3D,10 see also Sec. V.

III. ACCl RATE COEFFICIENTS

As a reference rate coefficient for discussion of the quan-
tum and gyroscopic effects in the capture of dipolar molecules
by ions, we take the ACCl rate coefficient which provides
a good approximation to accurate rate coefficients under the
condition ε �1 and δ �1 with the relative accuracy of 1/Jc,
where Jc is a characteristic value of the total angular mo-
mentum for the capture event. In what follows we use the
scaled (to its Langevin counterpart) ACCl rate coefficient,
ACClχ (j)(ε, δ), which was used in earlier work on capture in the
classical regime. An additional reason for using ACClχ (j)(ε, δ)
as a reference, beside its property to provide correct asymp-
totic ANC rate coefficients, ANCχ (j)(ε, δ), is its feature to co-
incide with the latter in the limit ε � 1 for certain values of
δ, δ = Rδ

(J,j )
n , which in Paper I1 was called the reference set.

In this way, one could expect that the energy-dependent and
temperature-dependent ratios of the ANC/ACCl rate coeffi-

cients would not be too different from unity across a wide
range of energy/temperature, from ε, θ �1 to ε, θ � 1,
though in the former case the ACCl rates have to be extrapo-
lated beyond their formal limits of validity.

The quantities ACClχ (j)(κ , δ) are given by1

ACClχ (j )(κ, δ) = 1

2j + 1

j∑
n=−j

(
1 + nδ

κ
√

j (j + 1)

)

×�

(
1 + nδ

κ
√

j (j + 1)

)
, (3.1)

where �(x) denotes the step function of x. The quantities
ACClχ (j)(κ , δ) are expressed as a function of the ratio δ/

√
2ε

by

ACClχ (j )(ε, δ) ≡ ACClχ (j )(δ/
√

2ε)

= 1

2j + 1

j∑
n=−j

(
1 + nδ√

2ε
√

j (j + 1)

)

×�

(
1 + nδ√

2ε
√

j (j + 1)

)
. (3.2)

The averaged scaled capture rate coefficient, ACClχ (j)(θ , δ),
expressed as a function of the scaled temperature θ = kBT/EL,
finally reads

ACClχ̄ (j )(θ, δ) =
∞∫

0

ACClχ (j )(ε, δ)F (ε, θ )dε (3.3)

with the Boltzmann distribution

F (ε, θ ) = 2

θ3/2
√

π
exp(−ε / θ )

√
ε. (3.4)

The quantity ACClχ̄ (j )(θ, δ) is expressed analytically as a func-
tion of the single parameter δθ = δ /

√
2θ

ACClχ̄ (j )(θ, δ) ≡ ACClχ̄ (j ) (δθ )

= 1 + δθ

2
√

π

√
j (j + 1)

j + 1 / 2

− 1

2j + 1

j∑
n=1

erf

(
δθn√

j (j + 1)

)
, (3.5)

where erf(x) is the error function. For j � 1, Eq. (3.3) trans-
forms into

ACClχ̄ (j�1) (δθ ) = 1 + δθ

2
√

π
+ 1 − exp

(−δ2
θ

)
2
√

π δθ

− 1

2
Erf (δθ ) .

(3.6)

Figure 1 shows the plot of ACClχ̄ (j�1) (δθ ), plots of two
asymptotics (the Langevin and ACClCD capture rate co-
efficients) (left ordinate axis) and plots of the ratios
ACClχ̄ (j ) (δθ ) /ACClχ̄ (j�1) (δθ ) (right ordinate axis) as a func-
tion of the scaled temperature parameter 2θ/δ2 = δ−2

θ . The
latter illustrates the effect of finite values of j on the ACCl
rate coefficient. As expected, that effect begins to show up
when the charge-dipole interaction noticeably modifies the
Langevin capture rate.
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FIG. 1. Plot of ACClχ̄ (j�1) (symbols), plots of its two asymptotics (the
Langevin, dotted line, and ACClCD, dashed line, capture rate coefficients)
(left ordinate axis), and plots of the ratios ACClχ̄ (j )/ACClχ̄ (j�1) (right ordi-
nate axis) vs. scaled temperature 2θ/δ2 = δ−2

θ .

IV. ANC RATE COEFFICIENTS

The ANC capture rate coefficient ANCχ (j)(ε, δ) is ex-
pressed through the capture probability ANCP

(J,j )
n (ε, δ) as

ANCχ (j )(ε, δ) =
∑
J,n

2J + 1

2j + 1
ANCP (J,j )

n (ε, δ), (4.1)

where the ANCP
(J,j )
n (ε, δ) are recovered from the solu-

tion of the capture equation that contains the eigenvalues,
c = ANCc

(J,j )
n (δ), of the ANC interaction matrix, ANCC(J, j)(δ),

see Paper I.1 The capture channels (each specified by a triad
(J, j, n)), that at the energy ε noticeably contribute to the
sum in Eq. (3.1), can roughly be identified by the classical
condition that their effective potential barriers (if they exist),
created by the anisotropic weak-field charge-dipole and gyro-
scopic interactions on the background of the isotropic charge-
induced dipole interaction, are below ε. This condition reads
ANCc

(J,j )
n (δ) ≤ √

8ε; for a given ε, it provides an upper limit
to positive values of ANCc

(J,j )
n (δ) and has no effect on negative

values of ANCc
(J,j )
n (δ). As an example, Fig. 2 shows plots of

ANCc
(J,j )
n (δ) for j = 1 in the range −10 < ANCc

(J,j )
n (δ) < 20

which, (for a given δ) includes classically open channels for ε

below 50.
Three features should be mentioned:

(i) A nearly quadratic δ-dependence for small δ. This is the
region of the fly-wheel (FW) approximation with domi-
nating gyroscopic interaction.

(ii) A nearly linear δ-dependence for large δ. This is the re-
gion of the standard adiabatic channel (AC) approxima-
tion with dominating charge-dipole interaction.2–4

(iii) Between these two regions, an interplay between the gy-
roscopic and electrostatic interactions is expected.

For very low energies, ε � 1, only channels with nega-
tive and small positive values of ANCc

(J,j )
n (δ) contribute: this

defines the ultra-low (UL) energy range. With increasing en-
ergies, a larger number of channels contribute: this defines

FIG. 2. Eigenvalues ANCc
(J,j )
n (δ) of the interaction matrix for j = 1 and

J = 0 (dashed-dotted brown line), J = 1 (full red lines), J = 2 (dotted blue
lines), and J = 3 (green dashed lines); J = 4 (blue line) and J = 5 (blue
line), that contribute to the rate coefficients at low and medium energies up to
ε = 50. Curves are labeled by (J, n) pairs. The ranges FW and AC indicate
regions where the fly-wheel and adiabatic channel treatment are applicable.

an intermediate energy range. At high energies, the adiabatic
channel approximation becomes valid.

In what follows, the results of calculation of the ANC rate
coefficients are presented through the ratios in which ACCl
rate coefficients are calculated analytically from Eqs. (3.1)
and (3.2):

S(j )(ε, δ) =
ANCχ (j )(ε, δ)
ACClχ (j )(ε, δ)

(4.2)

and S̄(j )(θ, δ) =
ANCχ̄ (j )(θ, δ)
ACClχ̄ (j )(θ, δ)

.

As noted in Paper I,1 the qualitative behavior of S(j)(ε, δ)
and S̄(j )(θ, δ), as functions of δ, are characterized by a set of
threshold values ANCδ

(J,j )
n and a set of reference values Rδ

(J,j )
n .

Figure 3 shows the ratios S(j )(ε, Rδ
(J,j )
n ) for j = 1, j = 2, and

3 under conditions where either one or two capture channels
are open at ultra-low energy (UL) energies (either threshold
ANCδ

(j,j )
−j or thresholds ANCδ

(j,j )
−j and ANCδ

(j+1,j )
−j ).

An interesting conclusion from Fig. 3 is that the rate co-
efficients ANCχ (j )(ε, Rδ

(J,j )
n ), at sufficiently large ε, oscillate

about their mean value which is different from (though slowly
approaching) their ACCl counterparts ACClχ (j )(ε, Rδ

(J,j )
n ). The

difference between the mean value of ANCχ (j )(ε, Rδ
(J,j )
n ) and

ACClχ (j )(ε, Rδ
(J,j )
n ) is due to the fact that the ACCl approxi-

mation completely ignores the gyroscopic interaction which,
as seen from Fig. 2, has non-negligible effect even at high en-
ergies. Presumably, faster convergence of ANCχ (j )(ε, Rδ

(J,j )
n )

to its high-energy limit would be achieved if the latter was
identified with ANCCl rate coefficient (see Paper I1). Had
one used, as a reference rate coefficient, the AC quantum
counterpart instead of the ACCl counterpart, the difference
between ANCχ (j )(ε, Rδ

(J,j )
n ) and ACχ (j )(ε, Rδ

(J,j )
n ) would be

larger. This is due to the fact that the AC approximation
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FIG. 3. Energy dependence of the ratios of axially nonadiabatic and classi-
cal adiabatic channel rate coefficients S(j )(ε, Rδ

(J,j )
n ) = ANCχ (j )(ε, Rδ

(J,j )
n )/

ACClχ (j )(ε, Rδ
(J,j )
n ) for a set of reference values of reduced dipole moments

Rδ
(J,j )
n for j = 1, 2, 3.

incorrectly attributes a non-zero centrifugal repulsion to the
lower capture channel J = j, i.e., � = 0. The ACCl ap-
proach artificially removes, by a series of approximations (see
Paper I1), this inconsistency, thus producing a reasonable ref-
erence limit. Figure 4 illustrates the quenching of the un-
dulations in S̄(1)(θ, Rδ

(J,j )
n ) as a result of the averaging of

S(j )(ε, Rδ
(J,j )
n ).

Passing now to cases with δ different from Rδ
(J,j )
n , we

show in Fig. 5 the ratios S(j)(ε, δ) for a set of δ values from the
interval 0 ≤ δ ≤ 4.

The following properties of the low-energy range are no-
ticed in Fig. 5:

(i) For δ = 0, S(1)(κ , δ)|κ → 0 → 2 which is the Vogt-Wannier
limit.

FIG. 4. Temperature dependence of the ratios of axially nonadiabatic
and classical adiabatic channel rate coefficients S̄(j )(θ, Rδ

(J,j )
n ) = ANCχ̄ (j )

(θ, Rδ
(J,j )
n )/ACClχ̄ (j )(θ, Rδ

(J,j )
n ) for a set of reference values Rδ

(J,j )
n with

j = 1, 2, 3, see Fig. 3.

FIG. 5. Energy dependence of the ratios S(1)(ε, δ) = ANCχ (1)(ε,
δ)/ACClχ (1)(ε, δ) for j = 1 and a regular set of δ with 0 < δ < 4.

(ii) For δ = 0.3, S(1)(κ , δ) drops with decreasing κ . This com-
pensates the too strong divergence of the ACCl rate in the
limit κ → 0 and brings the ANC rate to its FW counter-
part.

(iii) For δ = 1, S(1)(κ , δ) is about 2. This reflects the virtu-
ally complete opening of the first quantum channel in
the ANC rate coefficient while its ACCl counterpart is
smaller by a factor of 2.

(iv) For δ = 2, S(1)(κ , δ) is very close to unity. It would be
exactly equal to unity for Rδ̄

(1,1)
−1 = 2.12.

(v) For δ = 3 and δ = 4, the S(1)(κ , δ) lie on either side of the
horizontal unity line. The values of S(1)(κ , δ) replace the
incorrect behavior of the ACCl rates in a situation where
the ANC rates for δ = 3 and δ = 4 are almost the same.

In the intermediate energy range, the S(j)(κ , δ) show
the expected undulatory behavior that reflects the consecu-
tive opening of capture channels with high values of the to-
tal angular momentum. Figure 6 illustrates the quenching of
the undulations in S̄(1)(θ, δ) as a result of the averaging of
S(1)(ε, δ).

The seemingly irregular dependence of S(1)(ε, δ) and
S̄(1)(θ, δ) on δ at low energies and temperatures in Figs. 5 and
6 can be better understood by the study of the δ dependence
of the ratios across a continuous range of δ at very low en-
ergy or temperature. Figure 7 presents plots of ULS̄(j )(θ, δ) for
j = 1, 2, and 3 and θ = 10−4 across a range of δ that accom-
modates several thresholds values, ANCδ

(J.j )
n , for opening of

the CD capture channels and several reference values, Rδ
(J.j )
n

where ULS̄(j )(θ, δ) crosses unity), see Table III.
Here, the vertical arrows mark the following thresholds:

the first three arrows (collapsed into a single full black ar-
row) for the lowest channels with J = j, the second three
(narrow spaced full, dashed, and dotted arrows) for the low-
est channels with J = j − 1, the third three (widely spaced
dashed, dotted, and full arrows) for the lowest channels with
J = j + 2, the next two (dashed and dotted arrow) for the
higher channels with J = j, and the last one (dashed arrow)
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FIG. 6. Temperature dependence of the ratios S̄(1)(θ, δ) = ANCχ̄ (1)(θ, δ)/
ACClχ̄ (1)(θ, δ) for j = 1 and a set of different δ from the range 0 < δ

< 4.

for the second channel with J = j = 3. The plots ULS̄(j )(θ, δ)
explain low energy/temperature parts of Figs. 3–6, for those
that exceed the first thresholds ANCδ

(j,j )
−j , where the ANC rates

are not too different from their ACCl counterparts and where
both rate coefficients display approximately the same tem-
perature dependence, ANCχ̄ (j )(θ, δ) ∝ ACClχ̄ (j )(θ, δ) ∝ θ−1/2.
For δ < ANCδ

(J.j )
−j , the ACCl and ANC rate coefficients show

different temperature behavior in the UL range. They are,
therefore, shown independently in Fig. 8 which is an exten-
sion of Fig. 1 of Ref. 10.

In this figure the UL region, for θ < 5 × 10−2 and δ

≤ 1, corresponds to the FW approximation of Ref. 10 when
only a single CD capture channel becomes completely open
at δ ≈ 1. The FW s-wave rate coefficients (dotted blue lines)
here are compared with their ANC (full red lines) and ACCl

FIG. 7. Plots of ULS̄(j )(θ, δ) = ANCULχ̄ (j )(θ, δ) / ANCULχ̄ (j )(θ, δ) for j = 1,
2, and 3 and θ ≈ 10−6. The arrows indicate thresholds for the opening of con-
secutive capture channels for pure CD interaction (see text for the assignment
of the CD thresholds).

FIG. 8. Plots of ANCχ̄ (1)(θ, δ) (red full lines) and ACClχ̄ (1)(θ, δ) (green
dashed lines) from UL to higher temperatures and for a set of δ. The marked
region corresponds to the FW approximation of [10] (dotted blue lines).

(dashed green lines) counterparts. For δ < ANCδ
(1,1)
−1 = 0.643,

the ANC rate coefficients are close to the FW rate coefficients
as given in Ref. 10 and they show a much slower increase
with decreasing θ than the ACCl rate coefficients. The UL
part of this figure helps to understand where a small dipole
moment starts to modify the increase of the rate coefficient of
a nonpolar molecule from the Vogt-Wannier limit. One sees
for instance that, for δ = 0.3, the charge-dipole interaction
noticeably modifies the charge-induced dipole rate coefficient
at temperatures where the latter begins to switch from the
Langevin to the Vogt-Wanner limit.

The UL temperature capture rate coefficients for
δ < δ

(j,j )
−j ,ANCχ̄ (j )(θ, δ)|

θ�1,δ<ANCδ
(j,j )
−j

are obtained from the

general expressions of Paper I1 which yield

ANCχ̄ (j )(θ, δ)|
θ�1,δ<ANCδ

(j,j )
−j

= (θ/8)τj −1/2 sin2(πτj )√
π

�2(1 − τj )

�(1 + τj )
[1 + O ((θ/8)τj )],

(4.3)

where τj =
√

1/4 + ANCc
(j,j )
−j (δ). We note that the correction

term O(x) in Eq. (4.3) is small as long as τ j is not too small,
i.e., when δ is not too close to ANCδ

(j,j )
−j . As pointed in Pa-

per I,1 the coefficients ANCc
(j,j )
−j (δ), for δ < ANCδ

(j,j )
−j , only

weakly depend on j, and this dependence completely disap-
pears in the limit δ → 0, as ANCc

(j,j )
−j (δ) can be represented by

ANCc
(j,j )
−j (δ)|δ�1 = −2δ2/3. In this way, the zero-temperature

limit of Eq. (4.3) for non-polar molecules passes to the Vogt-
Wannier capture rate coefficient:

ANCχ̄ (j )(θ, δ)|θ�1,δ�1 = FWχ̄ (j )(θ, δ)|θ�1,δ�1

= 2(θ/8)−2δ2/3(1 + O(
√

θ/8), (4.4)

ANCχ̄ (j )(θ, δ)
∣∣
θ→0,δ=0 = FWχ̄ (j )(θ, δ)

∣∣
θ→0,δ=0 → VWχ̄ = 2.

(4.5)
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For δ approaching δ
(1,1)
−1 , i.e., when the capture channel

for pure CD interaction opens, the quantum rate coefficient
for the full interaction (charge-dipole + charge-induced
dipole) is close to the classical CD rate coefficient. We cannot
judge whether this is accidental. Unfortunately, the method
of calculating capture probabilities with the WKB approx-
imation at small distances, does not allow one to trace the
complete transition from the full interaction to the pure CD
interaction. Indeed, with decreasing polarizability, the range
of “small distances” shrinks, and one encounters similar
difficulties as in the treatment of finite-size effects in electron
capture.11 With a further increase of δ, i.e., δ > δ

(j,j )
−j , several

CD capture channels completely open up. The figure shows
plots for one or two open channels for δ = 1, 2, 3, and 4. The
coincidence of the three rate coefficients with δ = 1, 2, and 3
at θ = 10−4 is a specific quantum effect when all contribu-
tions from higher waves, except for the leading one (for j = 1,
J = 1, n = −1) are totally suppressed. The rate coefficients
in this case are ANCχ̄ (1)(θ, δ)|θ→0;δ=1,2,3 = 1/

√
2πθ . For

δ = 4, the second channel with j = 1, J = 2, n = −1 opens,
and ANCχ̄ (1)(θ, δ)|θ→0;δ=4 = 8/3

√
2πθ . On the other hand,

the ANC and ACCl rate coefficients in the limit of small θ are
given by ANCCDN (1)(δ) /

√
2πθ and ACClCDN (1)(δ) /

√
2πθ,

respectively, yielding the ratio S̄(1)(θ, δ)|θ→0;δ=4

= (ANCχ̄ (1)(θ, δ) / ACClχ̄ (1)(θ, δ))|θ→0;δ=4 = √
2. With

increasing θ , the coincidence of ANCχ̄ (1)(θ, δ)δ=1,2,3 disap-
pears and, e.g., the rate coefficients with δ = 3 approach
those with δ = 4 at θ > 10−1. For still larger θ , the ANC
rate coefficients converge to their ACCl counterparts as
demonstrated by comparison of the upper red full line with
the upper dotted green line, both corresponding to δ = 4.

V. THE EFFECTS OF K-DOUBLING

K-doubling manifests itself in a small splitting of the dou-
bly degenerate state j, k of a symmetric top rotor and arises
as a result of comparably weak perturbations such as the
coupling of rotation with doubly degenerate vibrations, spin-
orbital or hyperfine interactions. Accounting for K-doubling
in capture dynamics complicates the analysis of the inter-
play between gyroscopic and electrostatic interactions, sup-
plementing these by radial nonadiabatic coupling between the
states of the collision complex that arise from the two K-
doublet states of the free rotor. The main features of this in-
terplay are discussed in the following.

The ANC states introduced in Paper I1 ANC|J, j, n; δ〉
are defined by those positive δ that correspond to a cer-
tain sign of the quantum number k in the basis AC states
AC|J, j, m, k〉. The latter do not belong to a def-
inite parity p of the free rotor state and, therefore,
the ANC states ANC|J, j, n; δ〉 do not correspond
to a definite total parity P of the collision pair. If
one uses the parity-adapted AC basis AC|J, j,m, |k|, p〉
= 1√

2
(AC|J, j,m, k〉 + pAC|J, j,m,−k〉) for constructing the

ANC matrix, its diagonalization yields the ANC states
ANC|J, j, n, P; δ〉 with certain total parity quantum number
P = (− 1)�p, where � is the quantum number of the relative
angular momentum when it is well defined, i.e., in the limit

δ → 0. The states ANC|J, j, n, P; δ〉 and, therefore, the ANC
potentials are doubly degenerate with respect to P = ±1.

The ANCK (K for K-doubling) potentials are defined as
eigenvalues of the interaction operator which is written as a
generalization of Eqs. (2.1) and (2.2) of Paper I.1

V̂ = (Ĵ − ĵ)2

2μR2
+ qμDk̂ĵR

j (j + 1)R3
− q2α

2R4
+ p̂

�Ek

2
. (5.1)

Here the first term corresponds to the relative rotation, the
second to the weak-field charge-dipole interaction, the third
to the charge-induced dipole interaction, and the fourth is the
K-doubling term with the splitting of �Ek. The operators k̂

and p̂ do not commute: the former is diagonal in the J, j, m, k
representation with the eigenvalues ±|k|, the latter in the J, j,
m, |k|, p representation with the eigenvalues ±1. In this way,
ANCK potentials are generated from ANC potentials by lift-
ing the degeneracy with respect to P. In our reduced variables,
a J, j block of the operator υ̂(J,j ) can be written as

ANCKυ̂(J,j )(ρ, δ) =
ANCKĈ(J,j )(δ, ρ)

2ρ2
− 1

2ρ4
. (5.2)

Here ANCKĈ(J,j )(δ) is an operator
ANCKĈ(J,j )(δ) = (Ĵ − ĵ)2 + 2δĵ ρ / ρ

√
j (j + 1) + p̂�ερ2.

(5.3)

The ρ-dependent eigenvalues of this operator,
ANCKc

(J,j,P )
n (δ, ρ), define the ANCK potentials

ANCKυ(J,j,P )
n (δ, ρ) =

ANCKc
(J,j,P )
n (δ, ρ)

2ρ2
− 1

2ρ4
. (5.4)

Asymptotically, for δ → 0, the ANCKυ
(J,j,P )
n (δ, ρ) become

ANCKυ(J,j,P )
n (δ, ρ)|δ→0 → �(� + 1)

2ρ2
+ p

�ε

2
− 1

2ρ4
. (5.5)

The quantity � ≡ �(J, j, n) of the r.h.s. of Eq. (5.5) is
the relative angular momentum that corresponds to the triad
(J, j, n) of the l.h.s., while p is the parity of the free top state.
In this way we get

P = (−1)�(J,j,n)p. (5.6)

Depending on the characteristic value of the Massey pa-
rameter for the transition between K-doubling states, one can
consider limiting cases of sudden and adiabatic motion across
the ANCK potentials. If the Massey parameter is small, the
nonadiabatic coupling corresponds to the sudden regime, and
K-doubling effects can be ignored. This is the case for the
CH3D molecule even for extremely low collision energies
where K-doubling is due to hyperfine interaction and the split-
ting �ε falls into the kHz range.12 If the Massey parameter
is large, nonadiabatic effects are small, and K-doubling ef-
fects show up. A large K-doubling effect can be expected,
for instance, in the capture of NO(X2�1/2) in different rota-
tional states j by an ion. Here the �-doubling splitting (more
exactly, the doubling of the state with � = 1/2), which is
due to second-order combined spin-orbit/rotational interac-
tion with higher-lying electronic state,13 falls into the MHz
range,14 and the two states |j, � = 1/2, p〉 with p = ±1 can be
simulated (in terms of its wave-function) by two weakly split



144315-7 Auzinsh et al. J. Chem. Phys. 139, 144315 (2013)

states |j, |k| = 1/2, p〉 of a symmetric top with half-integer val-
ues of j. For the lowest rotational states j = 1/2, p = ±1, the
4 × 4 matrix ANCKC(J, 1/2) can be diagonalized analytically to
give the ANCK potentials

ANCKυ
(J,1/2,P )
±1/2 (δ, ρ) = (J + 1/2)2

2ρ2

±
√[

�ε

2
−σ

(J+1/2)

2ρ2

]2

+
(

δ

ρ2
√

3

)2

− 1

2ρ4
, (5.7)

where σ , the parity index, can assume values σ = ±1. Since
�(J, 1/2, ±1/2) = J ± σ /2, from Eq. (5.6) we get

P ≡ P
(J,1/2)
±1/2,σ = (−1)�p = (−1)J±σ/2p, (5.8)

which relates the parity index σ to the total parity quantum
number P. The four states that correspond to four ANCK po-
tentials in Eq. (5.7) form two pairs of states differing in P. The
states within each pair are coupled by the radial nonadiabatic
interaction. Special cases of Eq. (5.7) are the following:

(i) If K-doubling is neglected, i.e., for �ε = 0, Eq. (5.7)
yields the corresponding ANC expression

ANCυ
(J,1/2)
±1/2 (ρ) = (J + 1/2)2

2ρ2

±
√(

(J + 1/2)

2ρ2

)2

+
(

δ

ρ2
√

3

)2

− 1

2ρ4
. (5.9)

In this case, four ANCK potentials from Eq. (5.7) col-
lapse into two ANC potentials each being doubly degen-
erate with respect to the total parity P = ±1 and belong-
ing to the same value of the intrinsic parity p. The non-
degenerate states are mutually uncoupled, and the ANC
expression in Eq. (5.9) can also be recovered from the
ANCSC expression in Eq. (2.12) of Paper I,1 though the
latter was derived under the assumption J � 1.

(ii) If Coriolis coupling is neglected, i.e., for σ = 0, Eq. (5.7)
yields the corresponding AN expression which accounts
for K-doubling (ANK expression):

ANKυ
(J,1/2)
±1/2 (ρ) = (J + 1/2)2

2ρ2

±
√(

�ε

2

)
+

(
δ

ρ2
√

3

)2

− 1

2ρ4
. (5.10)

In this case, four ANCK potentials from
Eq. (5.7) collapse into two ANC potentials each being
doubly degenerate with respect to the total parity P = ±1
and belonging to different values of the intrinsic parity p. The
non-degenerate states belonging to the same P are coupled
by the radial nonadiabatic interaction. This coupling was
discussed in Ref. 15 in a description of its lambda-doublet

TABLE I. Dipole moments of CH3D and CHD3.

CH3D, CH3D, CHD3, CHD3,
Reference 10−3 D 10−3 a.u. 10−3 D 10−3 a.u.

Expt. μ
(a)
D

16 4.1 1.61 4.3 1.69

Expt. μ
(b)
D

17 5.57 ± 0.10 2.19 ± 0.04 5.69 ± 0.14 2.24 ± 0.06

Theor. μ
(c)
D

17 6.8 ± 0.5 2.7 ± 0.2 6.6 ± 0.4 2.6 ± 0.2

specificity in the low-temperature capture of NO(X2�1/2) in
its lowest rotational state by ions.

In the general case, the ANCK potentials from
Eq. (5.7) provide a general access to an analytical treatment
of the parity-changing nonadiabatic transitions between two
�-doubling states of diatomic molecules in degenerate elec-
tronic states for j = 1/2.

VI. A CASE STUDY: CAPTURE OF CH3D AND CD3H
IN DIFFERENT ROTATIONAL STATES BY H+, D+,
AND H3

+

As indicated in Sec. V, K-doubling in CH3D is very
small, and its effect on capture can be neglected down to
very low temperatures, i.e., below 10−6 K. We, therefore, use
the results of Sec. IV for a calculation of capture rate coef-
ficients ignoring K-doubling effects. In this case, the capture
of CH3D and CD3H in different rotational states j, k by H+,
D+, and H3

+ provides an instructive illustration of the inter-
play of electrostatic and gyroscopic interactions in the cap-
ture dynamics. This is facilitated by the fact that the values of
δ = δ(j, k) for the dipole moments μD of CH3D and CD3H
(see Table I) are close to the value of δ̄

(j )
c discussed in

Sec. IV. In what follows, we concentrate on collisions be-
tween CH3D(j,k) and H+ and later consider other ions.

Values of δ(j, k) with j = 1, k = 1, and j = 2, k = 1
and 2, for CH3D(j, k) + H+ capture, and the relevant dipole
moments are listed in Table II.

Figure 9 shows plots of ANC rate coefficients for j = 1,
ANCχ̄ (1)(θ, δ) and three values of the dipole moments. Also
shown are the Langevin rate coefficient (dashed line), and its
quantum counterpart ANCχ̄ (1)(θ, δ)

∣∣
δ=0 (dotted line) tending,

in the limit of low temperatures, to the Vogt-Wannier limit.

TABLE II. Values of reduced dipole moments δ(x)(j, k) for capture of H+
by CH3D(j, k) in various rotational states j, k (for the three dipole moments
μ

(a)
D ,μ

(b)
D , μ

(c)
D of Table I).

j, k δ(a) δ(b) δ(c)

1, 1 1.98 2.69 3.28
2, 1 1.14 1.55 1.89
2, 2 2.28 3.10 3.78
3, 1 0.807 1.10 1.33
3, 2 1.61 2.20 2.68
3, 3 None None None
4, 1 0.625 0.849 1.04
4, 2 1.25 1.70 2.07
4, 3 1.88 2.55 3.11
4, 4 2.50 3.40 4.15
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FIG. 9. Plots of ANCχ̄ (1)(θ, δ) for capture CH3D(j = 1, k = 1) + H+ (full
curves, labeled by three values of δ = δ(x)(j, k), that correspond to the three
possible values of μD of Table I). The plot of ANCχ̄ (1)(θ, δ)

∣∣
δ=0 (dotted red

line) and the Langevin limit (dashed black line) are also shown.

Together with the scaled temperature θ , here also the
conventional temperature T(K) is given. The low-temperature
convergence of the plots with δ(a) = 1.98 and δ(b) = 2.69 par-
allels that for δ = 2 and δ = 3 in Fig. 6, while the plot with
δ(c) = 3.28 lies noticeably higher than that for δ(b) = 2.69.
This is due to the fact that the value of δ(c) = 3.28is above
the threshold value ANCδ

(2,1)
−1 = 3.23 that corresponds to the

full opening of the second capture channel for pure CD inter-
action. For the former case, with charge-dipole and charge-
induced dipole interaction, the second channel is only par-
tially open. This observation is consistent with Fig. 7 which

FIG. 10. Ratios S̄(1)(θ, δ) = ANCχ̄ (1)(θ, δ)/ACClχ̄ (1)(θ, δ) for capture
CH3D(j = 1, k = 1)+H+ (full curves, labeled by three values of δ = δ(x)(1,
1), that correspond to the three possible values of μD of Table I).

FIG. 11. Ratios S̄(2)(θ, δ) = ANCχ̄ (2)(θ, δ)/ACClχ̄ (2)(θ, δ) for CH3D(j = 2,
k = 1, 2) + H+ capture (full curves labeled by δ = δ(x)(j, k), that correspond
to the three possible values of μD of Table I).

shows a steep increase of the UL capture probability across
the range 3.23 < δ < 3.5.

A comparison of ANC and ACCl rate coefficients is il-
lustrated in Figs. 10 and 11 by plots of the ratios S̄(1)(θ, δ(x))
and S̄(2)(θ, δ(x)).

Here the positions of the plots in their UL energy part are
consistent with the order of the parameters δ (see Table III)
given by

ANCδ
(1,1)
−1 < δ(a)(1, 1) < Rδ

(1,1)
−1 < δ(b)(1, 1)

< ANCδ
(2,1)
−1 < δ(c)(1, 1), (6.1)

ANCδ
(2,2)
−2 < δ(a)(2, 1) < δ(b)(2, 1) < δ(c)(2, 1) < Rδ

(2,2)
−2

< δ(a)(2, 2) < δ(b)(2, 2) < ANCδ
(3,2)
−2 < δ(c)(2, 2). (6.2)

One notices that the ACCl approximation, extrapolated
from higher energies into the UL range, performs rather
satisfactorily, with maximum deviations of about 20% in
the UL range. Larger differences between ANCχ̄ (j )(θ, δ) and
ACClχ̄ (j )(θ, δ) begin to show up in the range 0.1 < θ < 1. For
the system under discussion, with the parameters α(CH3D)
= 17.3 a.u. and μ(CH3D + H+) = 1.7 × 103 a.u., this range

TABLE III. Threshold values ANCδ
(J,j )
n (for the abrupt opening of the cap-

ture channel (J, j, n) for pure CD interaction) and reference values Rδ
(J,j )
n .

ANCδ
(j,j )
−j

ANCδ
(j+1,j )
−j

ANCδ
(j−1,j )
−j+1

ANCδ
(j+2,j )
−j

ANCδ
(j,j )
−j+1

j Rδ
(j,j )
−j

Rδ
(j+1,j )
−j

Rδ
(j−1,j )
−j+1

Rδ
(j+2,j )
−j

Rδ
(j,j )
−j+1

1 0.643 3.23 . . . 7.38 . . .
2.12 5.65 . . . 10.6 . . .

2 0.641 3.34 5.60 7.66 9.88
2.04 4.90 6.12 9.80 11.84

3 0.640 3.42 4.72 7.94 8.49
2.02 4.62 6.06 . . . 11.26
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TABLE IV. Reduced dipole moments δ and scaling temperatures
TL = (EL / kB) for capture of isotopically substituted methane molecules by
various ions, calculated with dipole moments μ

(a)
D , μ

(b)
D , and μ

(c)
D for CH3D

and CD3H from Table I (with α(CH3D) = α(CD3H) = α(CH4) = 17.3 a.u.
= 2.56 A18).

Collision δ TL/10−3 K

CH3D + H+ 1.98; 2.69; 3.28 6.08
CH3D + D + 3.75; 5.08; 6.21 1.69
CH3D + H+

3 5.33; 7.25; 8.85 0.834
CHD3 + H+ 2.09; 2.76; 3.20 6.00
CHD3 + D + 3.97; 5.25; 6.10 1.65
CHD3 + H+

3 5.68; 7.52; 8.73 0.808

of θ according to Eq. (2.1) with TL = (EL/kB) = 6.08 × 10−3K
corresponds to T between 10−3 and 10−2 K. Values of δ and
TL for other collision partners are listed in Table IV.

A summary of ANC capture rate coefficients for j = 1,
k = 1 states of CH3D and CD3H in collisions with differ-
ent ionic partners is presented in Fig. 12 where S̄(1)(θ, δ(x)) is
shown for θ = 10−4.

It should be finally noted that the importance of the gy-
roscopic effect for the capture of CH3D molecules shows
the large difference between the threshold values of the
ANC and AC reduced dipole moments, ANCδ

(j,j )
−j and ACδ

(j,j )
−j

= (j + 1/8)
√

j (j + 1) / j . For instance, two values of
δ(x)(j, k) for j = 2, δ(a)(2, 1) = 1.14 and δ(b)(2, 1)
= 1.55 are above the first ANC threshold ANCδ

(2,2)
−2 = 0.641

but are below the first AC threshold ACδ
(2,2)
−2 = 2.60, and

all values of δ(x)(j, k) for j = 3 are above the first ANC
threshold ANCδ

(3,3)
−3 = 0.640 but are below the first AC thresh-

old ACδ
(3,3)
−3 = 3.61(see Table I from Paper I1). This implies

that the AC approximation, which ignores the Coriolis cou-
pling, is completely inadequate for an estimation of the low-
temperature capture rate coefficients for the considered states

FIG. 12. Ratios ULS(1)(ε, δ) for the capture CH3D + H+ (open circles),
CD3H + H+ (filled circles), CH3D + D+ (open squares), CD3H + D+ (filled
squares), CH3D + H3

+ (open triangles), CD3H + H+ (filled triangles) + H+
superimposed onto the plots ULS(j)(ε, δ) for θ = 10−6 (full line).

of the CH3D molecules. Here, the ACCl approach performs
much better, since, as a consequence of the classical approxi-
mations, to a large extent it mimics the gyroscopic interaction.

VII. CONCLUSION

This article has served two purposes. First, it provided
the quantitative link between the two limiting ranges of cap-
ture between the gyroscopic- dominated and the electrostatic-
dominated collision regimes. For values of δ < 1, the capture
dynamics is described by the fly-wheel approximation if the
collision energy or temperature is small (ε � 1, θ � 1) while,
for δ > 1, the standard adiabatic channel approximation can
be used if the collision energy or temperature is large (ε � 1,
θ � 1). In the wide range of intermediate cases the general
ANC approach formulated in Paper I1 applies.

Second, it illustrated the magnitude of the treated ef-
fects by considering the capture of an ion by a symmetric top
with a small dipole moment which can be obtained by iso-
topic substitution of an atom in a spherical top molecule. This
was illustrated by the capture of ions by substituted methane
molecules. For CH3D + H+, δ varies (for different rotational
states and different possible values of the dipole moment of
CH3D) between values above and close to unity, implying a
competing manifestation of gyroscopic and electrostatic inter-
actions in the capture dynamics. Here, the ultra-low tempera-
ture range, where not too many capture channels contribute
to the rate coefficient, corresponds to temperatures below
10−2 K. This is an important reference situation, since δ might
be larger if the proton is replaced by heavier ions, or lower
if the CH/CD moiety is replaced by an AB/AB′ moiety with
smaller change in the reduced mass upon substitution.

Unfortunately, at present there are no experimental data
for capture under the conditions discussed here. Nonetheless,
we hope that our work motivates low-temperature capture
studies under conditions where very small dipole moments
of the neutral can substantially change the capture rate coeffi-
cients in comparison to those for nonpolar molecules.
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