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Abstract
We investigate the possibility of using the electric-field-dependent
laser-induced fluorescence scheme
X 1�(v′′, J ′′)→ B 1�(ν ′, J ′)→ X 1�(v, J = J ′, J ′ ± 1) to create an
image (or movie) of the electric field surrounding an object. Specifically we
find that when NaRb is probed in this way, vector correlations between the
excitation laser polarization, fluorescence radiation polarization, and electric
field vector are sensitive to the magnitude of the electric field, even when the
wavelength of the fluorescence (and hence final state J ) is not resolved.

1. Introduction

The importance of plasmas to material processing has inspired
experimental studies of the complex flow of glow discharges.
Of particular importance has been a host of techniques
developed to measure the spatial dependence of the electric
field in the plasma. Among the most successful of these
are optical techniques that take advantage of changes in the
spectra of atoms and molecules caused by electric fields
(the Stark effect). These optical techniques are reviewed
by Lawler and Doughty [1]. One of the most successful
schemes for field measurement, first demonstrated by Moore
et al [2], takes advantage of the field-induced breakdown
of parity selection rules in the laser-induced fluorescence
between 1� and 1� states of diatomic molecules. In the
absence of an electric field, dipole selection rules require
that the laser-induced 1�(v′′, J ′′) → 1�(ν ′, J ′) transition
occurs only to the 	-doublet component of the 1�(ν ′, J ′)
state that has opposite total parity as the ground 1�(v′′, J ′′)
state. The field-free fluorescence signal must again change
parity as the 1�(ν ′, J ′) fluoresces to the 1�(ν, J ) state. For
this reason, the parity of the initial 1�(v′′, J ′′) state must
match the parity of the final X 1�(v, J ) state. This fact
implies that, in the absence of an electric field, if one induces
the Q-branch transition 1�(v′′, J ′) → 1�(ν ′, J ′), only Q-
branch transitions 1�(ν ′, J ′) → 1�(v, J ′) contribute to

the fluorescence. If instead an R- or P-branch transition
1�(v′′, J ′±1)→ 1�(ν ′, J ′) is induced, only R- and P-branch
fluorescence 1�(ν ′, J ′) → 1�(v, J ′ ± 1) is observed. In the
presence of a field, however, parity is no longer a good quantum
number and these selection rules break down. Thus the ratio
of Q-branch fluorescence to R- and P-branch fluorescence
is sensitive to the local electric field. This technique was
first demonstrated by Moore and coworkers using BCl [2].
The field-measurement technique has since been adapted to
NaK [3, 4]. A complete theory of polarization-and-field-
dependent fluorescence has been presented by Derouard and
Alexander [5] and, more recently, by our group [6].

In the NaK studies, spectacular field-dependence
polarization effects are observed [3, 4]. The fact that
the polarization-dependent fluorescence intensity depends
strongly on the electric field suggests an improved field-
imaging scheme. In this scheme, it is no longer necessary
to spectroscopically resolve the Q-branch fluorescence from
the R- and P-branch fluorescence. Instead the fluorescence is
filtered from scattered laser light and then measured at specific
polarizations with a CCD camera (figure 1). The elimination
of the need to resolve the wavelength of the fluorescence may
prove to be advantageous: instead of the time-consuming
process of creating a rastered image, the technique presented
here could use a single physical setup to create a photographic
image (or video) of the electric field surrounding an object.
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Figure 1. Proposed configuration for imaging the electric field in a
plasma.
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Figure 2. Schematic diagram of the experimental setup.

Here we present both experimental and theoretical evidence
that such an electric-field camera is feasible.

Experimental data are gathered using equipment on hand
in our laboratory. Because the X 1�(v′′ = 10, J ′ = 24) →
B 1�(ν ′ = 6, J ′ = 24) transition of NaRb corresponds to the
632.8 nm-wavelength of a HeNe laser, we choose to implement
this scheme using NaRb. A high-resolution monochromator
is used here with its slits opened wide in order to mimic
the resolution of an interference filter. Finally, the spatial
dependence of the fringe field of a parallel plate capacitor is
probed using a movable iris (see figure 2). This experimental
setup is described in detail in the next section. Section 3
gives a model of the field dependence of the fluorescence
signal. This model is used to predict the field-dependent
fluorescence image surrounding a parallel plate capacitor and
compared to experiment in section 4. Conclusions are left to
section 5.

2. Experimental details

NaRb contained in an alkali-resistant glass cell is placed in an
oven and heated to produce a vapour pressure of approximately
10−3 Torr. Two stainless steel disc-shaped plates of diameter
6.5 mm are placed inside the cell to form a parallel-plate
capacitor of gap 1.0 mm. The plates are supported by
electrodes that feed through the glass cell so that they may
be biased by a variable dc power supply. The 632.8 nm
output of a HeNe laser is used to excite the X 1�+ (electronic
ground) state 23Na87Rb with v′′ = 10 quanta of vibration and
J ′′ = 24 quanta of rotation via a Q-branch transition to the
B 1� state with v′ = 6 quanta of vibration and J ′ = 24
quanta of rotation. The 594.4 nm fluorescence produced as
this excited NaRb decays to the v′′ = 0, J ′′ = 23, 24 and
25 levels of the X 1�+ state is measured as a function of
both the location of the fluorescence and its polarization. The
observed fluorescence is collected through a monochromator
configured with wide slits. In this configuration, the band pass
of the monochromator is 0.5 nm. This bandwidth is narrow
enough to eliminate scattered light, but too broad to completely
discriminate between the R-, P-, and Q-branch fluorescence.
The monochromator is used because of its availability to the
laboratory. It could easily be replaced by an interference filter.
Such a setup would allow for direct imaging of the emitted
fluorescence.

3. Theory of measurement

The theory of fluorescence of a 1� state in an electric field
is covered in detail [5, 6] whereas the fundamental physics of
this problem is covered in many sources [7]. Here we review
the fundamental principles of this theory in the context of
the NaRb system. Specifically, we consider the interaction
of the 	-doublet components of a 1�(v′, J ′)-state molecule
produced by laser excitation of a 1�+(v′′, J ′′) state. In the
presence of an electric field, we excite a coherent superposition
of both 	-doublet components of the 1�(v′, J ′) state. This
superposition of excited states produces fluorescence with a
polarization that is dependent on the degree of field-dependent
mixing. In our model we assume that the electric field is not
so strong that it dramatically alters the ground state and that
the bandwidth of the excitation laser is much broader than the
Stark shift of the energy levels.

3.1. Distortion of the electronic wavefunctions by a static
electric field

We begin by considering the effect of an applied static field
on the molecular wavefunctions. In the absence of an electric
field the wavefunction of a rotating diatomic molecule in a 1�

state is given by

|J ′M ′ 1�e/f 〉 = |J ′M ′ 1�ε〉
= [|J ′M ′	〉|	〉 + ε|J ′M ′ −	〉| −	〉√

2
. (1)

Here |	〉 is the electronic wavefunction for the projection of
the electronic orbital angular momentum on the molecular axis.
The wavefunction |J ′M ′	〉 describes the overall rotation of the
molecule. The eigenvalue of the electronic parity operator is
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given by ε = ±1 and the overall parity of the molecule is
given by P� = ε(−1)J

′
. Conventional notation [8] dictates

that 	-doublet levels with ε = +1 are labelled e whereas 	-
doublet states with ε = −1 are labelled f . At high J ′ the
electronic wavefunction is symmetric with respect to reflection
through any plane containing the rotation axis of the molecule
for the e(ε = +1) levels and antisymmetric for the f (ε = −1)
levels [9–11].

Because the electric field E destroys the spherical
symmetry of the system, neither the rotational quantum
number J nor the parity quantum number ε are good quantum
numbers of the eigenstate. The cylindrical symmetry is not,
however, destroyed by the external electric field. For this
reason, the projection quantum numbers of the ground-state
angular momenta µ and excited state angular momenta M
remain conserved. Unless the applied electric field is very
strong, it is still useful to label the distorted eigenstates with J
and ε. We write the distorted wavefunction of the 1� state as

|M 1�; J ′ε〉 =
∞∑
J ′
s=1

∑
εs=±1

CJ
′k
�M(J

′
s , εs)|J ′

sM
1�εs 〉. (2)

Of course the index ε = ±1 is no longer the eigenvalue of
the electronic parity operator and J ′ is no longer the quantum
number of the total angular momentum operator. Instead
|M 1�; J ′ε〉 denotes the state that evolves adiabatically from
the field-free state |J ′M ′ 1�ε〉 as the electric field is slowly
increased from zero. Here the coefficients CJ

′k
�M(J

′
s , ε) give

the static-field mixing of the field-free wavefunctions of given
values of M , 	-doublet state εs , and angular momentum J ′

s .
Thus, at zero field, we have

CJ
′ε
�M(J

′
s , εs) = δεεs δJJ ′

s
for E = 0. (3)

For the ground 1�+ state in the absence of an electric field,
the wavefunction may be represented by |J ′′µ 1�+〉 where
J ′′ gives the total angular momentum quantum and µ the
projection angular momentum quantum number. As the field
is turned on, these J ′′–µ′′ states evolve into states |µ′′ 1�+; J ′′〉
where

|µ′′ 1�+; J ′′〉 =
∞∑
J ′′
s =0

CJ
′′
�µ′′(J

′′
s )|J ′′

s µ
′′ 1�〉. (4)

The coefficients CJ
′ε
�M(J

′
s , εs) and CJ

′′
�µ′′(J ′′

s ) are found from
diagonalization of the Hamiltonian accounting for both
molecular rotation and the Stark effect.

3.2. General expression for the polarization-dependent
intensity of the laser-induced fluorescence

Using a general density matrix approach [11, 12–14], one may
write the density matrix element εε

′
ρMM ′ of the electronic

excited state as

εε′ρMM ′ = h̄�̃p

h̄� + i εε′�MM ′

∑
µ′′

〈M 1�; J ′ε|Ê∗ · D̂|µ′′ 1�; J ′′〉

×〈µ′′ 1�; J ′′|Ê · D̂∗|M ′ 1�; J ′ε′〉. (5)

Here the summation over µ′′ is over the magnetic sublevels
of the ground state 1� with rotational quantum number J ′′

whereasM andM ′ are magnetic sublevels of the excited state
with rotational quantum number J ′, belonging to 	-doublet
components ε = ±1 and ε′ = ±1. The unit vector Ê describes
the polarization of exciting laser beam, D̂ is a transition dipole
moment unit vector, �̃p is the reduced absorption rate, � is the
effective excited state relaxation rate, and εε′�MM ′ is energy
splitting between the |M ′ 1�; J ′ε′〉 and |M 1�; J ′ε〉 states.
The excited state density matrix εε

′
ρMM ′ allows one to calculate

the intensity of the fluorescence If (Êf ) originating from this
state in the transition 1�(v′, J ′) → 1�(v, J ) and possessing
polarization Êf :

If (Êf ) = 1
4I0

∑
ε,ε′,M,M ′,µ

〈M 1�; J ′ε|Ê∗
f · D̂f |µ 1�; J 〉

×〈µ 1�; J |Êf · D̂∗
f |M ′ 1�; J ′ε′〉 εε′ρM ′M. (6)

Here I0 is a proportionality coefficient and D̂f refers to the
transition dipole unit vector for the spontaneous emission.

To evaluate If (Êf ), each of the dipole matrix elements
are rewritten in terms of the field-free wavefunctions using
the expansions of equations (2) and (4). For example the
matrix element 〈M 1�; J ′ε|Ê∗ · D̂|µ′′ 1�; J ′′〉 appearing in
the excited state density matrix is written as

〈M 1�; J ′ε|Ê∗ · D̂|µ′′1�; J ′′〉
=

∑
J ′′
s J

′
s εs

CJ
′ε
�M(J

′
s , εs)C

J ′′
�µ(J

′′
s )〈J ′

sM
1�ε|Ê∗D̂|J ′′

s µ
′′ 1�〉.

(7)

This expression for the matrix element in terms of field-free
wavefunctions allows us to take advantage of the Wigner–
Eckart theorem [11, 12, 15–17]. The matrix element appearing
in the summation of equation (7) becomes

〈J ′
sM

1�εs |Ê∗D̂|J ′′
s µ

′′ 1�〉
=

∑
k

Ek∗(−1)J
′
S−M

(
J ′
s 1 J

′′
s

−M k µ′′

)
〈J ′
s , εs‖D̂‖J ′′

s 〉. (8)

Here the term in large parentheses is the three-j symbol, and
〈J ′
s , εs |D|J ′′

s 〉 is the reduced matrix element [12, 18] and Ek

are the cyclic components of the unit vector Ê given by

E±1 = ∓Ê · (x̂ ± iŷ)√
2

E0 = Ê · ẑ. (9)

It follows from equations (1) and (8) that 〈J ′
s , εs‖D‖J ′′

s 〉 is
given by

〈J ′
s , εs‖D̂‖J ′′

s 〉 = 1√
2

[(−1)J
′
s+J

′′
s +1 + εs]

√
G(J ′

s , J
′′
s ). (10)

Here G(J ′
s , J

′′
s ) is the Hönl–London factor with 	′ = 1

corresponding to a � state and 	′′ = 0, corresponding to
the � state:

G(J ′
s , J

′′
s ) = (2J ′

s + 1)(2J ′′
s + 1)

(
J ′
s 1 J ′′

s

−	′ 	′ −	′′ 	′′

)2

.

(11)

3.3. Assumptions

3.3.1. First assumption. We assume the electric field does
not mix states with different J values. This approximation
is valid because the splitting between the e–f levels is much
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smaller than the splitting between rotational levels. Thus, for
a large range of electric field strengths, the 	-doublet states
mix but the rotational states do not. In this range, the mixing
coefficients simplify to

CεJ
′

�M(J
′
s , εs) = CεJ ′

�M(εs)δJ ′J ′
s
. CJ

′′
�µ(J

′′
s ) = δJ ′′J ′′

s
. (12)

Using this approximation, the matrix element of equation (8)
becomes

〈M 1�; J ′ε|Ê∗ · D̂|µ′′ 1�; J ′′〉
=

∑
εs=±1

CεJ
′

�M(εs) 〈J ′M 1�εs |Ê∗ · D̂|J ′′µ′′ 1�〉

=
√

2
∑
k

Ek∗(−1)J
′−MCεJ

′
�M((−1)J

′+J ′′+1)

×
(
J ′ J ′′ 1

−M µ′′ k

) √
G(J ′, J ′′). (13)

3.3.2. Second assumption. Provided the electric field is not
too strong, the mixing coefficients can be expressed using first-
order perturbation theory. The result has the elegant form given
by Derouard et al [5]:

CεJ
′

�M(ε) = cos θM

CεJ
′

�M(−ε) = sin θM (14)

with

θM = 1

2
arctan

{
2dpME

�Jef J
′(J ′ + 1)

}
. (15)

Here �Jef is the field-free splitting between the e and f levels
that is well approximated by the expression

�Jef = q[J (J + 1)]. (16)

Substituting expansion terms in the form of equation (13),
the excited-state density matrix εε

′
ρMM ′ given by equation (5)

is written in terms of mixing coefficients of the form
CkJ

′
M�[(−1)J

′+J ′′+1]. These coefficients can be written as

CεJ
′

M�((−1)J
′+J ′′+1) = SJ ′εJ ′′

M

= sin
(
θM +

π

4
[1 − P�(J ′′)P�(J ′, ε)]

)
= sin

(
θM +

π

4
(1 − [(−1)J

′′
][ε(−1)J

′
]
)
. (17)

Here P�(J ′′) and P�(J ′, ε) give the parity of the ground
and excited states respectively. The expression for
CεJ

′
M�((−1)J

′+J ′′+1) in terms of the sine function clearly
illustrates that, in the zero-field limit (θM = 0), the transition
vanishes for the case that these two parities are equal and
is unity when they are not. Thus, in the zero-field limit,
the excited and ground states are coupled only by terms for
which the parity changes, as is expected for an electric dipole
transition.

By substituting our expression for the density matrix
(equation (5)) into our expression for the field-dependent
fluorescence (equation (6)) and then using expansions of the
form (13) with coefficients of the form of (17), one finds an

explicit expression for the field-dependent fluorescence given
the approximations we have made:

If (Ê, Êf ,E) = (h̄�̃p)I0G(J ′, J )G(J ′, J ′′)

×
∑

ε,ε′,M,M ′,µ,µ′′,l,l′,k,k′

SJ
′εJ ′′
M SJ

′ε′J ′′
M ′ SJ

′εJ
M SJ

′ε′J
M ′

h̄� + i εε′�MM ′

×Ek∗Ek′
El∗f E

l′
f

(
J ′ J ′′ 1

−M µ′′ k

) (
J ′ J ′′ 1

−M ′ µ′′ k′

)

×
(
J ′ J 1

−M µ l

) (
J ′ J 1

−M ′ µ l′

)
. (18)

3.3.3. Third assumption. To complete our model, we must
determine the way in which the electric field affects the 	-
doublet splitting kl�MM ′ = EelM ′ε′ − EelMε. To determine this
splitting, one needs Stark energy expressionsEelMε. By solving
Schrödinger’s equation to second order in E (see Mizushima
et al [19]),

EelMε = 1

2
�Jef + ε

√
(�Jef )

2

4
+
d2
pE2M2

[J (J + 1)]2

+
d2
pE2

2B ′
v

{
(J 2 − 1)(J 2 −M2)

J 3(4J 2 − 1)

− [(J + 1)2 − 1][(J + 1)2 −M2]

(J + 1)3[4(J + 1)2 − 1]

}
+ O(E3). (19)

Here B ′
v is the rotational constant.

Note that although we only consider the two-state mixing
of 	-doublet components of the same J , this second-order
result does consider the perturbation of the energy levels by
neighbouring J states. For values of electric field for which

|EJM± − EJ±1M
∓ | � |EJM+ − EJM− | (20)

the second-order result given by equations (19) and (12)
become invalid. As the electric field increases the number
of rotational states that are significantly mixed increases as
well. For fields large enough for equation (20) to be true,
the applicability of our perturbation treatment breaks down
and one has to solve the secular equation system [20] for the
relevant Hamiltonian matrix. The analysis of such a treatment,
accounting for J ±�J mixing centred at initial (J ′′), excited
(J ′) and final (J ) rotational state of a J ′′ → J ′ → J transition
has been treated by Tamanis et al [6].

4. Evaluation of the polarization-dependent
fluorescence

Our expression for If (Ê, Êf ) assumes a z-quantization axis
that corresponds to the direction of the electric field. For an
imaging study, the direction of the electric field is typically
spatially dependent. It is therefore convenient to express
the components of the electric field in a coordinate system
independent way. Because of the axial symmetry of the
problem, there is some freedom in the way in which this is
done. For the case Ê �= Ê , we define the x-axis so that Ê

lies in the x–z-plane. For Ê = Ê , we define the x-axis so that
Êf lies in the x–z-plane. With these choices, the x, y and z
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Figure 3. Expected fluorescence intensity as defined by equation (18) of the text for various orientations of the electric field Ê , laser
polarization Ê, and fluorescence polarization Êf : thin full line, Q-branch fluorescence; short broken line, R-branch fluorescence; long
broken line, P-branch fluorescence; bold line, total fluorescence.

components of Ê and Êf are given by

Ê =



√
1 − (Ê · Ê)2

0
Ê · Ê


 (21)

Êf = 1√
1 − (Ê · Ê)2


 Ê · Êf − (Êf · Ê)(Ê · Ê)

(Ê × Ê) · Êf

(Êf · Ê)
√

1 − (Ê · Ê)2


 .

(22)
For Ê = Ê ,

Êf =



√
1 − (Êf · Ê)2

0
Êf · Ê


 . (23)

The Cartesian components given by equations (21) and (22)
can be used to evaluate the values of Eq and Eqf defined by
equation (9). By substituting these cyclic components of the
laser and fluorescence radiation and using the substitutions of
equations (15) and (19), one may evaluate the relative intensity
If (Ê, Êf , �E) of detected fluorescence when a 1� state is
excited by a laser with polarization Ê and observed through a
filter that allows only the polarization Êf .

Figure 3 gives the polarization- and field-dependent
fluorescence expected for the cases when Ê and Êf are either
perpendicular or parallel to �E . In the present experimental
arrangement, the final state is not resolved spectroscopically.
For this reason, the expression for If (Ê, Êf , �E) is summed
over all possible final values of J (J = 23, J = 24, and
J = 25). Required constants take on the values d = 3D [21],
q = 2.892 × 10−6 cm−1 [21], � = 6 × 107 s−1 [22], and
B ′
v = 0.0478 cm−1 [23]. When Ê and Êf are both parallel

to �E , the expected fluorescence decreases with increasing
field. For all other cases considered, the expected fluorescence
increases with increasing field.

�###�"��
��

�#�"��
��
�$%#

$%#

#%#

��!�



�&%# &%##%#

Figure 4. Magnitude of the electric field in the vicinity of the
parallel-plate capacitor for the case of a 200 V potential across the
terminals.

5. Experiment versus theory

Figure 4 shows the electric field between the parallel-plates
of the capacitor in the experiment found using the relaxation
method [24]. Figures 5 and 6 show the expected spatially-
dependent LIF signal for the case that the laser polarization
is parallel and perpendicular to the axis of the capacitor. The
inverse relationship between fluorescence intensity and electric
field strength causes a marked difference between the image
of figure 5 (fluorescence polarization parallel to the capacitor
axis) and figure 6 (fluorescence polarization perpendicular to
the capacitor axis.)

Figures 7 and 8 compare data taken with the setup shown
in figure 2 to those given by the model in equation (18).
We see that the agreement between theory and experiment
is only qualitative. The major source of this disagreement
can be traced to our initial assumption that the bandwidth
of our excitation laser is much broader than the Stark shift
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Figure 5. Expected laser-induced fluorescence image for the case of
a 200 V potential across the terminals of the capacitor and laser
polarization Ê and fluorescence polarization Êf directed parallel to
the capacitor axis.
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Figure 6. Expected laser-induced fluorescence image for the case of
a 200 V potential across the terminals of the capacitor, laser
polarization Ê directed parallel to the capacitor axis, and
fluorescence polarization Êf directed perpendicular to the capacitor
axis.

of the energy levels. This is only approximately true for the
case of a 500 V cm−1 field (see figure 7). For 2000 V cm−1

field, the effect of the narrow bandwidth HeNe laser is more
pronounced and agreement between theory and experiment
becomes quite poor (figure 8). A full treatment of the effect of
the bandwidth of the excitation laser will be treated in a future
work.

6. Conclusion

We have found that a highly sensitive probe to an electric field
in a plasma can be obtained without dispersing the fluorescence
radiation. Specifically, our findings suggest the following
relatively inexpensive technique for experimentally testing
models of the field in a plasma: (1) introduce NaRb into the
plasma; (2) use a HeNe laser to excite the NaRb; (3) use a
CCD camera to image the fluorescence through a polarizer
and an interference filter centered about 595 nm; (4) compare
the expected fluorescence distribution to that predicted by the
model field and equation (18).
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Figure 7. The ratio of fluorescence intensity for the case of a 50 V
potential across the terminals to the fluorescence intensity for the
case of a 0 V potential across the terminals as a function of position
along an axis going through the centre of the capacitor. Here the
laser polarization Ê is directed parallel to the capacitor axis. Full
curves and squares, comparison of prediction and experiment for Êf

directed perpendicular to the capacitor axis; broken curves and
triangles, comparison of prediction and experiment for Êf directed
parallel to the capacitor axes.
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Figure 8. The ratio of fluorescence intensity for the case of a 200 V
potential across the terminals to the fluorescence intensity for the
case of a 0 V potential across the terminals as a function of position
along an axis going through the centre of the capacitor. Here the
laser polarization Ê is directed parallel to the capacitor axis. Full
curve and squares, comparison of prediction and experiment for Êf

directed perpendicular to the capacitor axes; broken curve and
triangles, comparison of prediction and experiment for Êf directed
parallel to the capacitor axis.

Whereas agreement between our model and theory is
currently qualitative, we have clearly demonstrated that
the effect of 	-doublet mixing on the polarization of the
1�(v′′, J ′′) → 1�(v′, J ′) → 1�(v, J ) laser-induced-
fluorescence scheme provides a sensitive probe of an electric
field in a plasma.
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