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1. INTRODUCTION
The study of resonant, nonlinear, magneto-optical effects
(NMOE) is an active area of research with a rich history
going back to the early work on optical pumping. These
effects result from the resonant interaction of light with
an atomic or molecular system in the presence of addi-
tional external electromagnetic fields (most commonly a
uniform magnetic field, but we will also consider electric
fields). A recent review by Budker et al.1 deals primarily
with the effects in atoms; the molecular case is detailed in
a monograph by Auzinsh and Ferber.2 In this paper, we
focus on the dynamical aspects of such interactions, at-
tempting to offer the reader a unified view on various di-
verse phenomena and techniques while avoiding exces-
sive repetition of material already discussed in the
previous reviews. Interest in the application of dynamic
NMOE to experimental techniques has been increasing in
recent years. The use of dynamic effects allows one to do
things that are difficult with steady-state NMOE, for ex-
ample, high-sensitivity, Earth-field-range magnetometry.
Dynamic effects can also allow information (such as the
value of energy-level splittings) that would normally be
obtained from high-resolution spectroscopy to be ex-
tracted from direct measurements of frequency, a more ro-
bust technique.
0740-3224/2005/010007-14$15.00 ©
NMOE (specifically those related to coherence
phenomena1) are observed when an optically polarized
medium undergoes quantum beats (Section 2) under the
influence of an external field, and so influences the polar-
ization and–or intensity of a transmitted probe light
beam. While this is inherently a dynamical process on
the microscopic level, a macroscopic ensemble of
particles3 reaches a steady state in about the
polarization-relaxation time if the external parameters
are held constant. Thus to observe quantum-beat dy-
namics, these parameters must be varied at a rate signifi-
cant compared with the polarization-relaxation rate.
One approach, discussed in Section 3, is to produce polar-
ization with a pulse of pump light and then observe the
effect of the subsequent quantum-beat dynamics on the
optical properties of the medium. Alternatively, the
method of beat resonances (Section 4) can be used in
which an experimental parameter [the amplitude (Sub-
section 4.A), frequency (Subsection 4.B), or polarization
(Subsection 4.C) of the light, the external field strength
(Subsection 4.D), or the rate of polarization relaxation
(Subsection 4.E)] is modulated and the component of the
signal at a harmonic of the modulation frequency is ob-
served. Resonances are seen when the modulation fre-
quency is a subharmonic of one of the quantum-beat fre-
quencies present in the system.
2005 Optical Society of America
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2. QUANTUM BEATS
Quantum beats2,4–7 is the general term for the time evo-
lution of a coherent superposition of nondegenerate en-
ergy eigenstates at a frequency determined by the energy
splittings. In this paper, we are primarily concerned
with the evolution of a polarized ensemble of particles
with a given angular momentum that have their Zeeman
components split by an external field. For linear Zeeman
splitting—the lowest-order effect due to a uniform mag-
netic field—the evolution is Larmor precession, i.e., rota-
tion of the polarization about the magnetic field direction.
For nonlinear splittings, such as quadratic Stark shifts,
the polarization evolution is more complex. The state of
the ensemble is described by the density matrix, which
evolves according to the Liouville equation. While this is
all that is necessary for a theoretical description of the
system, physical insight can often be gained by decompos-
ing the density matrix into polarization moments having
the symmetries of the spherical harmonics. In quantum
beats due to nonlinear energy splittings, the relative mag-
nitudes of the various polarization moments change with
time, a process sometimes known as alignment-to-
orientation conversion (see Refs. 1, 2 and references
therein). A pictorial illustration of the polarization state
can be obtained by plotting its angular-momentum-
probability distribution. The polarization-moment de-
composition and angular-momentum-probability distribu-
tion not only aid physical intuition, but they are
themselves complete descriptions of the ensemble state
and can be used in some cases to simplify calculations.
For a more detailed discussion, see Appendix A.

As an example we consider the nonlinear Zeeman shifts
that occur when atoms with hyperfine structure are sub-
jected to a sufficiently large magnetic field. For states
with total electron angular momentum J 5 1/2, such as
in the alkali atoms, the shifted frequency vm of each Zee-
man sublevel with spin projection m along the magnetic
field direction is given by the Breit-Rabi formula7

vm

2p
5 2

D

2~2I 1 1 !
2 gImmB

6
D

2 S 1 1
4mj

2I 1 1
1 j2D 1/2

, (1)

where j 5 ( gJ 1 gI)mB/D; gJ and gI are the electronic
and nuclear Landé factors, respectively; B is the magnetic
field strength; m is the Bohr magneton; D is the hyperfine-
structure interval; I is the nuclear spin; and the 6 sign
refers to the upper and the lower hyperfine level, respec-
tively. We set \ 5 1 throughout this paper.

Consider an atomic sample of Cs (I 5 7/2) initially in a
stretched state (mz 5 F 5 4) with respect to the z axis.
In the presence of an x̂-directed magnetic field, the energy
eigenstates are the uFmx& eigenstates of the Fx operator.
The stretched state along ẑ is a superposition of these
nondegenerate eigenstates, so quantum beats are seen in
the evolution of the system.

The time evolution of each eigenstate is given by
cm exp(2ivmt)uFm&, where cm is the initial amplitude.
For moderate field strengths such that the parameter j is
small, the shifts deviate only slightly from linearity.
Thus expanding Eq. (1) in powers of j, we see that over
time scales comparable to the Larmor period, the evolu-
tion (to first order) is just Larmor precession with period
t1 ' 8( gJmB)21 (neglecting here gI compared with gJ).
The evolution due to the second-order quadratic shifts is
also periodic, but with a much longer period t2
' 32D( gJmB)22. (For B 5 0.5 G, t1 ' 6 ms, and t2
' 0.3 s.) One way to illustrate these quantum beats is
to produce graphs of the spatial distribution of angular
momentum at a given time. To do this, we plot three-
dimensional closed surfaces for which the distance from
the origin in a given direction is proportional to the prob-
ability of finding the maximum projection of angular mo-
mentum along that direction.8,9 This plot illustrates the
symmetries of the polarization state, indicating which po-
larization moments are present. (For a discussion of the
angular-momentum-probability distribution and the po-
larization moments, see Appendix A.) A collection of sur-
faces showing the time evolution of the polarization over
half a period t2 of the second-order evolution is shown in
Fig. 1. The first plot (top left) represents the initial
stretched state—the surface is stretched in the ẑ direc-

Fig. 1. Quantum beats in Cs illustrated with surfaces repre-
senting the probability of finding the system in the state with
maximal projection m 5 F in a given direction.8,9 This se-
quence is ‘‘stroboscopic’’ in the sense that the surfaces correspond
to times chosen to have the same phase of the fast Larmor pre-
cession around the direction of the magnetic field x̂. From the
symmetry of the plots one clearly sees that orientation present in
the initial state collapses and revives in the process of the tem-
poral evolution. Temporal variation of higher polarization mo-
ments gives rise to higher-order-symmetry contributions to the
probability surface (see also Fig. 3).
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tion. This state undergoes rapid precession around x̂ of
period t1 . At the same time, the slower second-order
evolution results in changes in the shape of the probabil-
ity surface. By ‘‘stroboscopically’’ drawing successive sur-
faces each at the same phase of the fast Larmor preces-
sion (i.e., at integer multiples of t1), we can see the
polarization evolve into states with higher-order symme-
try before becoming stretched along 2ẑ at t 5 t2/2. In
particular at t 5 t2/4 the state is symmetric with respect
to the x-y plane, a characteristic of the even orders in the
decomposition of the polarization state into irreducible

Fig. 2. Angular momentum spatial distribution for states com-
posed only of population (r0

0) and the maximum possible values
of the components r6k

k for a particular k. k 5 0, monopole mo-
ment (isotropic state with population only); k 5 1, dipole mo-
ment (oriented state); k 5 2, quadrupole moment (aligned state);
k 5 3, octupole moment; k 5 4, hexadecapole moment; k 5 5,
triakontadipole moment.

Fig. 3. Temporal evolution of the norms of various polarization
moments of ranks k of the F 5 4 ground state of Cs correspond-
ing to the case of Figs. 1 and 4. The initial stretched state is
dominated by the lowest-order moments; at t 5 t2/4 the state is
composed only of even-order moments.
tensor moments rk (see Appendix A). In general for a
multipole moment of rank k with polarization transverse
to the quantization axis (such that only the components
rq

k with q 5 6k are nonzero) this moment has rotational
symmetry of order k about that axis2,10 (see Fig. 2).

To explore the decomposition into polarization mo-
ments further, it is useful to plot the norms9 of the polar-
ization moments as a function of time (see Fig. 3). The
figure shows that initially the lowest-order moments pre-
dominate. At t 5 t2/4 the odd-order moments are zero
and the state comprises even-order moments only.

We can now connect these pictures of the atomic polar-
ization state to an experimentally observable signal, e.g.,
the absorption of weak, circularly polarized light propa-
gating along ẑ. To find the absorption coefficient, assum-
ing that the upper-state hyperfine structure is not re-
solved, we transform to the uJ, mJ&uI, m 2 mJ& basis
with quantization axis along ẑ and sum over the transi-
tion rates for the Zeeman sublevels. At short time scales
[Fig. 4(a)] we see absorption modulated at the Larmor fre-
quency as the result of precession of the atomic polariza-
tion about the x axis. The absorption is minimal when
the state is oriented along ẑ and maximal when it is ori-
ented along 2ẑ. Looking at the envelope of this modula-
tion at longer time scales, we see collapse and revival
with period t2/2 of the absorption oscillation amplitude
[Fig. 4(b)]. The maxima of the envelope are associated
with the stretched states shown in Fig. 1 and the minima
with the states that are symmetric with respect to the x-y
plane. This can also be seen by comparison with Fig. 3;
the envelope of the signal plotted in Fig. 4(b) is propor-
tional to the norm of the k 5 1 moment (orientation), and
does not have any of the time-dependent behavior exhib-
ited by the higher-order moments in Fig. 3. While it is
true in general that weak probe light is not coupled to

Fig. 4. Collapse and revival beats arising in optically pumped
Cs atoms as a result of nonlinearity of Zeeman shifts. (a) Time-
dependent absorption of the probe light (see text) observed on a
short time scale reveals an oscillation at the Larmor frequency.
(b) Observation on a longer time scale reveals the characteristic
collapse and revival (beating) behavior. Note period of essen-
tially complete collapse of the oscillation pattern. (c) At even
longer time scales, the beat pattern is modified as a result of
third-order nonlinearity.
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atomic polarization moments of rank greater than two,11

the fact that the absorption is insensitive to the k 5 2
moment (alignment) is a consequence of our assumption
that the upper-state hyperfine structure is unresolved.
In Fig. 4(c) one can see the effect of the third-order terms
in the expansion of Eq. (1), reducing the contrast of the
envelope function.

Collapse and revival phenomena similar to the effect
described here have been observed in nuclear
precession.12 In that work spin precession of an I 5 3/2
system in 201Hg was studied, and the slight deviations
from linearity in the Zeeman shifts responsible for the col-
lapse and revival beats were due to quadrupole-
interaction shifts arising from the interaction of the at-
oms with the walls of a rectangular vapor cell. Collapse
and revival phenomena in molecules with large angular
momenta were considered in a tutorial paper.13

3. TRANSIENT DYNAMICS
To observe macroscopic dynamics in magneto-optical ef-
fects, some experimental parameter must be varied in
time. Perhaps the most conceptually straightforward
technique is to induce atomic or molecular polarization
with a pulse of pump light and then observe the transient
response. Quantum beats were originally observed in
this way by detecting fluorescence.14,15 We are primarily
concerned here with techniques involving probe-light de-
tection (a brief discussion of fluorescence experiments is
given in Subsection 6.A). An early application of this
method in conjunction with probe-light-polarization spec-
troscopy was an experiment16 with Yb vapor. A 5-ns
pulse of linearly polarized, dye-laser light produced a co-
herently excited population in the 63P1 state whose Zee-
man sublevels were split by a magnetic field. The trans-
mission of a subsequent linearly polarized, probe-light
pulse was observed through a crossed polarizer. Optical
anisotropy in stimulated emission was observed as polar-
ization rotation of the probe beam. The time dependence
of the signal due to the quantum-beat evolution (Larmor
precession) of the excited-state polarization was investi-
gated indirectly by holding the probe-pulse delay time t
fixed and sweeping the magnetic field. Oscillations cor-
responding to cos 2VLt, where VL is the Larmor fre-
quency, were seen in the signal. The factor of two ap-
pears because linearly polarized light induces alignment
(the k 5 2 tensor moment) that has twofold symmetry
about any axis perpendicular to the alignment axis (Sec-
tion 2). Thus the quantum-beat frequency for this mo-
ment is 2VL ; in general a rank-k moment polarized as
shown in Fig. 2 will have quantum-beat frequency kVL in
a ẑ-directed magnetic field.

Recently, nonlinear magneto-optical rotation with
pulsed pump light was used to study the sensitivity limits
of atomic magnetometry at very short time scales.17,18

Observation of the time dependence of optical rotation of
a weak probe beam allows the measurement of the mag-
netic field to be corrected for the initial spin-projection
uncertainty. For measurement times T short enough
that non-light-induced, polarization-relaxation processes
can be neglected (in this case T ! (gAN)21, where g is
the relaxation rate and N is the number of polarized at-
oms), a ‘‘quantum nondemolition measurement’’19 can be
performed by using far-detuned probe light. Over this
time a subshot-noise measurement with uncertainty scal-
ing as N23/4 is then possible.20 If squeezed light19 is used
Heisenberg-limited scaling of N21 can be obtained limited
to an even shorter measurement time T ! (gN)21.

In the experiments discussed so far in this section, the
measurement times were much shorter than the
polarization-relaxation time. When longer measure-
ments are made, the amplitude of the quantum beats will
be seen to decay during the measurement as a result of
mechanisms such as collisional relaxation and, for excited
states, spontaneous emission.21 An often important
mechanism that has the effect of polarization relaxation
is fly through or transit relaxation. This results from po-
larized particles traveling out of the probe light beam
while unpolarized particles enter the beam, resulting in a
decrease in average polarization in the probe region. The
effective rate of this relaxation g t can be estimated from
the average thermal velocity over the size of the relevant
region. However, this relaxation is in general not de-
scribed by an exponential decay with time constant g t ,
but in many cases can be substantially more complicated.
For example, consider a situation in which, immediately
after the pump pulse, particles are polarized in a spatial
region that is larger than the probe region. This can oc-
cur even if the pump and probe beams have identical and
overlapping profiles under conditions of nonlinear absorp-
tion: A strong Gaussian-profile pump beam can perform
efficient optical pumping even far away from the beam
center. The weak probe, on the other hand, acts at the
intensity range of linear absorption; it takes some time
for particles in thermal motion to reach the beam center
where they undergo the probe interaction. As a result in
the initial moments following the pump pulse, one does
not observe significant effective relaxation. Only after a
certain amount of time does fly-through relaxation set in.
This effect was predicted and measured for relaxation of
ground-state K2 molecules.22 This nonexponential relax-
ation kinetics can be significant in the quantitative analy-
sis of quantum-beat signals.

In addition to the observation of transients, another
way to study quantum-beat dynamics is to use resonance
techniques involving modulation of the external experi-
mental conditions. Such techniques are discussed in Sec-
tion 4.

4. BEAT RESONANCES
A. Amplitude Resonances
In a pulsed experiment such as those described in Section
3, the quantum beats will tend to wash out as the pulse
rate is increased relative to the polarization-relaxation
rate. Particles polarized during successive pulses will, in
general, beat out of phase with each other, canceling out
the overall medium polarization. If the quantum-beat
frequency is slower than the relaxation rate, each polar-
ized particle will not be able to undergo an entire
quantum-beat cycle before relaxing. Thus the quantum
beats will not cancel completely, and there will be some
residual steady-state polarization. This is the effect
studied in the limiting case of steady-state NMOE experi-
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ments with cw pump light. If the quantum-beat fre-
quency is faster than the relaxation rate, each particle
will contribute to the average polarization over its entire
quantum-beat cycle, and the macroscopic polarization of
the medium will be destroyed entirely. This is the reason
that magnetometers based on steady-state NMOE lose
sensitivity for Larmor frequencies greater than the relax-
ation rate. However, time-dependent, macroscopic polar-
ization can be regained—even for high quantum-beat
frequencies—if the pump light is pulsed or amplitude
modulated at a subharmonic of the quantum-beat
frequency.23 Polarization is produced in phase with that
of particles pumped on previous cycles. The light pulses
contribute coherently to the medium polarization, and the
ensemble beats in unison. This effect is known as syn-
chronous optical pumping or ‘‘optically driven spin
precession.’’26,27 This is a particular case of a general
class of phenomena known as beat resonances2,7,14,28 ex-
hibited when a parameter of the pump light or external
field is modulated, as discussed below. In NMOE experi-
ments such resonances are generally observed by using
lock-in detection of the transmission or polarization sig-
nal of the probe light at a harmonic of the modulation fre-
quency. However, in some cases, such as when total
transmission (or fluorescence) is observed, the resonances
can also be detected in the time-averaged signal.29

In 1961, Bell and Bloom26 were the first to observe beat
resonances due to quantum beats in the ground states of
Rb and Cs and in metastable He. The first ground-state,
quantum-beat resonance experiments in molecules were
performed with Te2

30 and were followed by experiments
with K2 .31,32 Synchronous optical pumping has been
used over the years in many applications. To give just
one example, this method was employed in sensitive
searches33–35 for a possible permanent electric-dipole mo-
ment (whose existence is possible only as a result of a vio-
lation of both parity and time-reversal invariance) of
199Hg.

B. Frequency Resonances
Frequency (rather than amplitude) modulation of the
pump light can be used to produce an effect similar to
that discussed in Subsection 4.A. Here the optical pump-
ing rate is modulated as a result of its frequency depen-
dence. One example of this is nonlinear magneto-optical
(Faraday) rotation with frequency-modulated light (FM
NMOR).36–38 In this technique linearly polarized light
near-resonant with an atomic transition is directed paral-
lel to the magnetic field. The frequency of the light is
modulated, causing the rates of optical pumping and
probing to acquire a periodic time dependence. As de-
scribed in Subsection 4.A a resonance occurs when the
quantum-beat frequency kVL for a rank-k polarization
moment equals the modulation frequency Vm (the lowest-
order nonisotropic polarization moment here has k
5 2). The atomic sample is pumped into a macroscopic,

rotating, polarized state that causes a periodic modula-
tion of the plane of light polarization at the output of the
medium. The amplitude of time-dependent optical rota-
tion at various harmonics of Vm can be measured with a
phase-sensitive lock-in detector (Fig. 5). Additional reso-
nances can be observed when the quantum-beat fre-
quency is equal to higher harmonics of the modulation
frequency (or what is equivalent, Vm is equal to subhar-
monics of the beat frequency 2VL /n, where n is the har-
monic order).

As discussed in Subsection 4.A, in a steady-state,
NMOR experiment, the equilibrium polarization of the
ensemble depends on the balance of Larmor precession
with various mechanisms causing the polarization to re-
lax (e.g., spin-exchange collisions or wall collisions).
When the Larmor frequency is much less than the relax-
ation rate, the magnitude of the optical rotation increases
linearly with the Larmor frequency. When the Larmor
frequency increases, polarization is washed out and opti-
cal rotation falls off. Such zero-field resonances are also
observed in the magnetic field dependence of the in-phase
FM NMOR signals (Fig. 5). For the zero-field resonances
Vm is much faster than both VL and the optical pumping
rate for the cell, so the frequency modulation does not sig-
nificantly affect the pumping process. On the other
hand, as the laser frequency is scanned through reso-
nance, there arises a time-dependent optical rotation, so
the signal contains various harmonics of Vm .

The FM NMOR technique is useful for increasing the
dynamic range of NMOR-based magnetometers (Subsec-
tion 5.B). The beat resonances have width comparable

Fig. 5. Signals detected at the first harmonic (a), (b) and second
harmonic (c), (d) of Vm as a function of longitudinal magnetic
field. This experiment employed buffer-gas-free, paraffin-coated
vapor cells containing isotopically enriched 87Rb. The laser was
tuned near the D1 line, laser power was 15 mW, beam diameter
;2 mm, Vm 5 2p 3 1 kHz, and the modulation amplitude
Dvm 5 2p 3 220 MHz. Traces (a), (c) and (b), (d) correspond to
the in-phase and the quadrature outputs of the signals from the
lock-in detector, respectively. The zero-field resonances ob-
served in traces (a), (c) are similar in nature to the resonances
observed in static NMOE studies (see text). The quadrature
components arise because of a phase difference between the
‘‘probe’’ modulation and the modulation of the optical properties
of the atomic medium. (Aligned atoms produce maximum opti-
cal rotation when the alignment axis is at an angle of p/4 to the
light-polarization direction.) Figure from Ref. 36.
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with that of the zero-field resonance (since the dominant
relaxation mechanisms are the same) but in principle can
be centered at any desired magnetic field.

C. Polarization Resonances
In addition to beat resonances obtained by modulation of
the light amplitude and frequency, resonances due to
modulation of light polarization have also been studied
(for a review of earlier work see Ref. 39). These polariza-
tion resonances (also called phase resonances) are much
like the other light modulation effects discussed above.
Polarization modulation can be thought of as out-of-phase
amplitude modulation of the light polarization compo-
nents, providing a conceptual link to amplitude reso-
nances (Subsection 4.A).

Fig. 6. Experimental arrangement for the polarization reso-
nance study.

Fig. 7. Faraday rotation angle (a) and transmission (b) depen-
dences on magnetic field recorded with stationary linear polar-
ization of light. Trace (c) shows light transmission as a function
of magnetic field when the linear polarization is rotated at Vm
5 2p 3 14 Hz. Coil current of 1 mA corresponds to a magnetic

field of approximately 1 mG.
For Zeeman beats the light polarization, when rotated
at the Larmor frequency, is always parallel to the align-
ment of the ensemble. In this case, optical pumping con-
tributes continuously and coherently to a rotating,
aligned polarization state of the ensemble. This effect
was studied in an experiment40 with Rb. A l/2-plate on a
motor-driven rotating optical mount was used to rotate
the light polarization direction continuously at a fixed fre-
quency; transmission was observed with lock-in detection
at this frequency while the longitudinal magnetic field
strength was swept (Fig. 6). The ‘‘dark resonance,’’ a
drop in transmission, is normally centered at zero field
when light polarization is fixed [Fig. 7(b)]. This reso-
nance was shifted by the polarization-rotation frequency
[Fig. 7(c)]. Polarization resonances occurring in mol-
ecules have been analyzed theoretically.29 In that work,
the time-averaged fluorescence intensity was considered
as the method of detection.

D. Parametric Resonances
As mentioned in Subsection 4.A one way to obtain beat
resonances is to modulate the external field (e.g., the
magnetic field) and consequently the Larmor precession
frequency. This method has been used for sensitive
atomic magnetometry41 and is presently employed as a
useful general-nonlinear-spectroscopic technique42 known
as parametric resonance. In a typical setup (Fig. 8), lin-
early polarized, resonant laser light traverses the me-
dium to which a magnetic field parallel to the light-
propagation direction is applied. The magnetic field has
two components—a nearly dc component (that can be
slowly scanned) and an ac component with frequency
much higher than the ground-state, polarization-
relaxation rate. Transmitted light intensity is monitored
with a photodetector, the signal from which is analyzed
with a lock-in amplifier referenced to the ac modulation of
the magnetic field.

As in FM NMOR (Subsection 4.B, Fig. 5) there are two
types of resonances that are seen when the dc magnetic
field is scanned: the zero-field resonance (independent of
the ac-modulation frequency) that appears only in the in-
phase component of the signal and the frequency-
dependent resonances in both the in-phase and quadra-
ture components. The former arises because for
resonant light the transmission is a quadratic function of
the magnetic field, while the latter are due to an effective
modulation of the rate of polarization production. As the
ac field adds to or subtracts from the static field, it leads
to acceleration or deceleration of the Larmor precession,

Fig. 8. Schematic of an experimental arrangement for
parametric-resonance spectroscopy with magnetic field modula-
tion.
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respectively. Since as discussed in Subsection 4.A Lar-
mor precession acts to average out the macroscopic polar-
ization induced by cw pump light, more overall polariza-
tion is generated when the Larmor precession rate is the
slowest. As a result the rate of polarization production is
modulated at the ac frequency, and so, as for amplitude or
frequency resonances, a beat resonance occurs when the
modulation frequency is a subharmonic of the quantum-
beat frequency.

E. Parametric Relaxation Resonances
Beat resonances can also arise when the parameter that
is modulated is the relaxation rate of the atomic polariza-
tion. Here again resonances occur when the frequency of
the modulation coincides with the spin-precession fre-
quency or its subharmonic. This effect was predicted
theoretically43,44 and observed experimentally45 in meta-
stable He where the relaxation rate was modulated by
modulating the discharge current in a He cell. Note that
since relaxation is independent of the direction of the
atomic spins (isotropic relaxation), this method, in con-
trast to those discussed above, cannot produce large over-
all polarizations of the sample when the Larmor preces-
sion rate significantly exceeds the relaxation rate (see
Subsection 4.A).

We also briefly mention here another related dynamic
magneto-optical effect: A sudden change in the relax-
ation or optical pumping rate for a driven spin system can
cause transient spin nutations46 while the system relaxes
towards its new equilibrium state.

F. Relation to Coherent Population Trapping
An equivalent description of the beat-resonance phenom-
ena can be given in terms of coherent population trapping
(CPT), an effect that is also closely related to L reso-
nances and mode crossing (see Ref. 47 for a review). In-
deed, harmonic modulation of the light intensity leads to
the appearance of two sidebands at frequencies shifted
from the unperturbed light frequency v0 by the value of
the modulation frequency: v1,2 5 v0 6 Vm . With
modulation depth less than 100%, the spectral component
with frequency v0 also survives [Fig. 9(a)]. A CPT reso-
nance occurs when the frequency difference between a
pair of spectral components of the modulated light coin-
cides with the frequency splitting of the lower-state Zee-
man sublevels, so that light is resonant with a pair of
transitions.47 For a F 5 1 → F8 5 0 transition [Fig.

Fig. 9. (a) Light frequency spectrum for light-intensity modula-
tion with 50% depth. (b) CPT resonance at double modulation
frequency in the case of a F 5 1 → F8 5 0 transition. The
lower state Zeeman sublevels are split in a magnetic field applied
along the quantization axis. (c) CPT resonances in the case of
frequency modulation with a large modulation index.
9(b)], a CPT resonance leads to transfer of population
from the ‘‘bright’’ state to the ‘‘dark’’ states that are un-
coupled to the light, and light transmission increases.
For harmonic modulation of the light intensity there are
two spectral difference frequencies (Vm , 2Vm), each re-
sulting in an observed resonance26 when the difference
becomes equal to 2VL , the splitting between the M 5 1
and M 5 21 energy levels.

CPT resonances can also occur when the light is fre-
quency modulated. In this case the light spectrum con-
sists of an infinite number of sidebands with amplitudes
of the nth sideband given by a Bessel function Jn(m) cor-
responding to the modulation index m 5 Dvm /Vm ,
where Dvm is the modulation depth. For example, an
experiment48 with Cs atoms studied the application of the
CPT effect with frequency-modulated light to atomic mag-
netometry. The value of the modulation index was m
' 1.5, so only a few sidebands were prominent. Both
vacuum and buffer-gas cells were used, and the minimum
observed width of the CPT resonance was 1.4 kHz in the
latter case. The width of the resonance sets the lower
bound on the magnetic fields (and correspondingly the
resonance frequency) for which the resonances can be re-
solved.

The situation changes somewhat if the modulation in-
dex becomes large. For example in the FM NMOR ex-
periments described in Subsection 4.B the modulation
depth is Dvm ' 30 MHz and the modulation rate is Vm
' 100–1000 Hz.36–38 Thus m ' 105 and the pairs of
DM 5 2 sublevels are coupled by a very large number of
frequency–sideband pairs with comparable amplitude
[Fig. 9(c)]. For this reason the description in terms of the
CPT resonances is less intuitive here than the
synchronous-pumping picture presented in Subsection
4.B.

5. APPLICATIONS
A. High-Order Polarization Moments
The use of Zeeman-beat resonances allows one to directly
create and detect higher-order polarization moments.
Because a rank k moment with polarization transverse
(in the sense described in Section 2) to the magnetic field
axis has symmetry of order k about that axis, a resonance
in both pumping and probing due to interaction with this
moment occurs when the light–particle interaction is
modulated at the frequency Vm 5 kVL . A dipole transi-
tion can connect polarization moments with ranks differ-
ing by at most two. Consequently, multiple photon inter-
actions are required to generate high-rank polarization
moments. For example, two interactions are required to
produce a rank k 5 4 hexadecapole moment from an ini-
tially unpolarized (k 5 0) state. There must be an equal
number of photon interactions to detect a signal due to
the high-order multipole moment, which will be modu-
lated at kVL . Thus the amplitude of the signal due to
the hexadecapole resonance scales as the fourth power of
the light intensity, as experimentally observed37 in FM
NMOR (Subsection 4.B).

Figure 10 shows the magnetic field dependence of FM
NMOR signals from a paraffin-coated cell containing 87Rb
in which the atoms are pumped and probed with a single
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light beam tuned to the D1 transition. At relatively low
light power [Fig. 10(a)], there are three prominent reso-
nances: one at B 5 0 and two corresponding to 2VL
5 Vm (see Subsection 4.B, Fig. 5). Much smaller signals
whose relative amplitudes rapidly grow with light power
are seen at 4VL 5 Vm , the expected positions of the
hexadecapole resonances.

Various experimental signatures of high-rank polariza-
tion moments were previously detected with other
techniques,49–55 but by taking advantage of the unique
periodicity of the dynamic optical signals with beat reso-
nances, such high-rank moments can be directly created,
controlled, and studied. Because of the enhanced optical
nonlinearities and different relaxation properties, higher-
order polarization moments are of particular interest for
application in many areas of quantum and nonlinear op-
tics. In addition, when performing high-field magnetom-
etry in alkali atoms (Subsection 5.B), the use of the
highest-order polarization moment supported by a given
state may be advantageous, because its evolution is free
of complications due to nonlinear dependence of the Zee-
man shifts on the magnetic field.37

Fig. 10. Example of the magnetic field dependence of the FM
NMOR signals showing quadrupole resonances at B
5 6143.0 mG and hexadecapole resonances at 671.5 mG. La-
ser modulation frequency is 200 Hz, modulation amplitude is 40
MHz peak-to-peak; the central frequency is tuned to the low-
frequency slope of the F 5 2 → F8 5 1 absorption line. Plots
(a), (b) show the in-phase component of the signal at two differ-
ent light powers; plot (c) shows the quadrature component.
Note the increase in the relative size of the hexadecapole signals
at the higher power. The insets show zooms on hexadecapole
resonances. Figure from Ref. 37.
B. Magnetometry
The steady-state NMOE are a valuable tool for magne-
tometry; it has been shown56 that the sensitivity of a mag-
netometer based on nonlinear Faraday rotation can reach
;10211 GHz21/2. Dynamic techniques can provide useful
extensions to the steady-state methods—in particular
they can be used to increase the magnetometer’s dynamic
range by translating the narrow zero-field resonances to
higher magnetic fields. As discussed in Subsection 4.B
steady-state NMOE lose sensitivity to magnetic fields
when the Larmor frequency is greater than the
polarization-relaxation rate. If beat resonances are used
for magnetic field detection, however, the dependence of
the resonance condition on the modulation frequency can
be used to tune the response of the system to a desired
magnetic field range.

While the earliest examples of beat-resonance magne-
tometry used amplitude26 or parametric41,57 resonances,
in recent years the use of light-frequency modulation has
become more common.36,58–60 This is a result of the de-
velopment and broad use of single-mode, diode-laser sys-
tems. For such lasers frequency modulation through the
diode current and–or the cavity length controlled with a
piezoelectric transducer voltage can be simpler and more
robust than either light-amplitude modulation or modula-
tion of the applied magnetic field. However, such fre-
quency modulation is usually accompanied by intensity
modulation of up to ;15%.60 The deleterious effects of
parasitic modulation and of laser-intensity noise can be
avoided by detecting optical rotation36 rather than trans-
mission.

The use of beat resonances to selectively address high-
rank polarization moments (Subsection 5.A) can also be
an advantage in magnetometry. Detection of such polar-
ization moments may result in increased statistical sen-
sitivity by allowing the use of higher light power without
significant increase in the polarization-relaxation rate
due to power broadening.37

One possible application of beat-resonance magnetome-
ters is to low-field and remote-detection nuclear magnetic
resonance and magnetic-resonance imaging. Both para-
metric resonance57 and FM NMOR magnetometers61

have been used to measure the nuclear magnetization of a
gaseous sample placed near a ‘‘probe’’ Rb-vapor cell. In
the latter work, the fields—due to Xe that was polarized
by spin-exchange collisions with laser-polarized Rb—were
in the nanogauss range.

6. RELATED TOPICS
A. Fluorescence Detection
Another standard technique for the observation of quan-
tum beats is the detection, not of polarization or transmis-
sion of a probe beam, but of spontaneous emission from
an excited state. Quantum beats in fluorescence induced
by weak probe light after pulsed excitation were observed
for the first time in an experiment62,63 measuring the
magnetic moment of the (v9 5 1, J9 5 73) rovibronic
level of the ground electronic state X1Sg

1 of K2 molecules.
Many molecules have 1S ground states. The magnetic
moment of these states is nominally zero—nonzero cor-
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rections appear only because of mixing with other states
due to perturbation by molecular rotation.64 This makes
calculations of magnetic moments in 1S states rather
complicated, and experimental measurements of these
moments become important.

As noted in Subsection 5.A, a single-photon dipole in-
teraction couples polarization moments with a difference
in rank of Dk < 2. Since the absorption and re-emission
of probe light is a two-photon process, moments up to
rank four can be observed in fluorescence induced by
single-photon excitation. Indeed, excited-state align-
ment will be directly connected by a dipole transition to
all existing ground-state moments from population (k
5 0) to the hexadecapole moment (k 5 4). This tech-

nique was used in the study of the K2 ground state for the
first observation31,32,65 of a beat resonance due to the
hexadecapole moment (Fig. 11). Relaxation dynamics22

and Zeeman beats63 of multipole moments up to hexade-
capole in K2 molecules were also observed using pulsed
pump light and fluorescence detection.

So far, we have discussed quantum beats arising as a
result of the temporal evolution of the ground state. Ob-
viously one can also detect quantum beats in excited-state
dynamics by observing fluorescence after pulsed excita-
tion. This technique was used for the first observations
of quantum beats in atoms in experiments with the 63P2
state14 of Hg and the 53P1 state15 of Cd. In diatomic
molecules quantum beats from an excited state were first
observed66 with I dimers in the B3P0u

1 state.
Quantum-beat studies measuring fluorescence from

metastable states have been done as part of efforts to im-
prove the present-day limit67 on the parity- and time-
reversal-invariance-violating, permanent electric-dipole
moment (EDM) of the electron.68 Close-lying states of
opposite parity that can be mixed by a static electric field
are advantageous for EDM measurements. The J 5 1
level of the first electronic excited state of lead oxide
(PbO), a(1)@3S1#, is split into two opposite-parity states
(the V doublet69) separated by only '11 MHz. A recent
experiment70 studied quantum beats in fluorescence from

Fig. 11. Ground-state beat-resonance signal measured as a
change of the degree of polarization of laser-induced fluorescence
as a function of modulation frequency Vm of excitation light.
The experiment was done with K2 molecules. Two resonances
were observed at twice (alignment) and four times (hexadecapole
moment) the Larmor frequency VL . Figure from Ref. 65.
molecules excited by a dye-laser pulse to the J 5 1 states
of a(1)(v8 5 5). For an EDM measurement it is neces-
sary to measure small shifts with great accuracy; a sensi-
tivity of '50 Hz/AHz was demonstrated,70 consistent with
shot-noise in the experiment. Precision measurements of
the Landé factors of the two components of the V doublet
were also made, laying the groundwork for a future EDM
measurement. Quantum-beat measurements have also
been done in atoms to evaluate metastable states for use
in an EDM measurement: precision tensor polarizability
measurements were done with Stark-induced quantum
beats in Sm.71 Also, a pair of long-lived, opposite-parity
states in Dy that are separated by only 3 MHz were
studied.72 These states, components of which can be
brought to crossing by applying a weak static magnetic
field, were used in a quantum-beat technique to search for
effects of parity violation.73

B. Polarization-Noise Spectroscopy
An unpolarized medium clearly can not produce a net
quantum-beat signal. However, even in an unpolarized
sample the randomizing processes that relax polarization
at a rate g cause the medium polarization to fluctuate
around its average value of zero. Since polarization cre-
ated at a given time persists for an average time 1/g, the
polarization-noise spectrum contains components only at
frequencies less than ;g in the absence of an external
field. When a magnetic field is applied, the polarization
produced at a given time undergoes quantum beats, and
so the detected signal in probe light propagating along the
magnetic field direction is modulated at the quantum-
beat frequency. Thus the peak in the noise spectrum
originally centered at zero frequency with width g is
shifted to the quantum-beat frequency. This effect has
been observed for Zeeman beats in an experiment on the
589-nm resonance line of Na contained in a vapor cell
with buffer gas.74

While the effect described above is classical in the
sense that it is not related to the inherent uncertainty in
the polarization of each individual particle, quantum ef-
fects can also be relevant. In particular, the uncertainty
relation between Cartesian components of the angular
momentum implies that a similar polarization-noise ef-
fect can be present not only for unpolarized samples, but
even when there is full polarization. For example, the
noise would still be present in the same experimental ge-
ometry if the particles were fully polarized along the mag-
netic field and had no longitudinal relaxation. The width
of the noise resonance would then be given by the trans-
verse relaxation rate.

An interesting blend of noise spectroscopy and the FM
NMOR method (Subsection 4.B) was recently studied us-
ing nonlinear Faraday rotation on the Rb D lines.75 A
balanced polarimeter could be configured to detect either
optical rotation or ellipticity of the light transmitted
through atomic vapor. Instead of the deliberate applica-
tion of laser-frequency modulation at a given rate, the fre-
quency noise inherent to diode lasers was relied on. The
noise power at the output of the balanced polarimeter at a
fixed frequency was observed as a function of the mag-
netic field. Resonant features were seen at B 5 0 and at
the values of B for which twice the Larmor frequency co-
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incided with the observation frequency, i.e., the counter-
parts of the usual FM NMOR resonances.

7. CONCLUSIONS AND OUTLOOK
We have discussed the various dynamic, nonlinear,
magneto-optical effects, including transient effects occur-
ring when the experimental conditions are changed sud-
denly, and beat-resonance effects that result from modu-
lation of an experimental parameter. We have attempted
to bring together diverse experimental techniques—
which can involve various modulation schemes, the
‘‘quantum’’ low-J limit or the ‘‘classical’’ high-J limit, and
related phenomena such as CPT—and describe them from
a common viewpoint.

The dynamic effects have many applications in atomic
and molecular physics, allowing experimental methods
that would be difficult to implement using steady-state ef-
fects. For example, polarization moments can be sepa-
rately influenced and measured, allowing determination
and exploitation of their various properties, such as dif-
fering relaxation rates. High-sensitivity magnetometry
based on optical rotation can be performed with arbi-
trarily large magnetic fields. Also, the dynamic effects
provide a robust technique for precise measurements of
energy-level splittings, which makes them an invaluable
tool for fundamental symmetry tests relating to atomic
and molecular structure and interactions.

APPENDIX A: POLARIZATION MOMENTS
AND THE ANGULAR-MOMENTUM-
PROBABILITY DISTRIBUTION
Here we describe in more detail the complementary de-
scriptions of the polarization state discussed in Section 2.
Most of the formulas given here can be found in the lit-
erature (for example, in Ref. 76), but they can be difficult
to piece together, and, in particular, a discussion of the
connection between the quantum and classical limits is
not readily available. Thus it seems useful to gather to-
gether this information. In this Appendix equation num-
bers of formulas found in Ref. 76 are referred to in brack-
ets.

To describe the polarization state of a particle, it can be
helpful to write the state as a sum of tensor operators
having the symmetries of the spherical harmonics
Ykq(u, f ). This multipole expansion is useful not only
for understanding the polarization symmetry (Fig. 2), but
also for reducing the complexity of the density-matrix-
evolution equations, especially for states with large angu-
lar momentum. In molecular spectroscopy, one typically
deals with states of much larger angular momenta (J
' 100) than with atoms. In this case, the standard

Liouville equations of motion77 form a large coupled sys-
tem that can be difficult to solve. However, the equations
of motion for the multipole expansion coefficients can be
much simpler.10 This idea was introduced by Ducloy78

and later applied to the analysis of a large variety of non-
linear magneto-optical effects in diatomic molecules (see
Ref. 2 and references therein).79
We employ the polarization operators T q
k , defined to be

irreducible tensors of rank k that satisfy the normaliza-
tion condition [Eq. 2.4(2)]:

Tr T q
k†T q8

k8 5 dkk8dqq8 (A1)

and the phase relation [Eq. 2.4(3)]

T q
k† 5 ~21 !qT 2q

k . (A2)

Matrix elements of T q
k resulting from this definition are

given by [Eq. 2.4(8)]

^Jm8uT q
kuJm& 5 S 2k 1 1

2J 1 1 D 1/2

^JmkquJm8&, (A3)

where ^...u...& are the Clebsch–Gordan coefficients. The
density matrix is defined as r 5 CC†, where C is the
wave function of one particle and the overbar denotes the
average over the ensemble. It [or any arbitrary (2J
1 1)(2J 1 1) Hermitian matrix] can be expanded in
terms of the polarization operators as [Eq. 6.1(47)]

r 5 (
k50

2J

(
q52k

k

rq
kT q

k† , (A4)

where the expansion coefficients rq
k are the expectation

values of T q
k [Eq. 6.1(48)]:

rq
k 5 Tr rT q

k . (A5)

In terms of the density-matrix elements rmm8 this gives
[Eq. 6.1.(49)]

rq
k 5 S 2k 1 1

2J 1 1 D 1/2

(
m,m852J

J

^JmkquJm8&rmm8 , (A6)

with the inverse transformation [Eq. 6.1(50)]

rmm8 5 (
k50

2J

(
q52k

k S 2k 1 1

2J 1 1 D 1/2

^JmkquJm8&rq
k . (A7)

These relations are also commonly written in an equiva-
lent form using the identity

^JmkquJm8& 5 ~21 !J2mS 2J 1 1

2k 1 1 D 1/2

^Jm8J2mukq&.

(A8)

To produce a visual representation of the polarization
state, we plot the probability of the maximum projection
of angular momentum along the unit vector n̂(u,f ) , i.e.,
the matrix element rJJ(u, f ) 5 ^JJ (u,f )uruJJ (u,f )&,
where [Eq. 6.1(20)]

uJm ~u,f !& 5 D~f, u, 0!uJm&,

5 (
m8

Dm8m
J

~f, u, 0!uJm&

(A9)

are the eigenfunctions of the J – n̂(u,f ) operator; the
Wigner D-functions Dm8m

J (a, b, g) are the matrix ele-
ments of the rotation operator D(a, b, g). Since the diag-
onal matrix elements of the polarization operators are
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found from Eqs. (A3) and (A9) and the properties of the
D-functions to be [Eq. 6.1(27)]

^Jm ~u,f !uTq
kuJm ~u,f !&

5 S 4p

2J 1 1 D 1/2

^Jmk0uJm&Ykq~u, f !, (A10)

it can be seen from the expansion (A4) that the angular-
momentum-probability distribution

rJJ~u, f ! 5 S 4p

2J 1 1 D 1/2

3 (
k50

2J

(
q52k

k

^JJk0uJJ&rq
kYkq* ~u, f !

(A11)

is a linear combination of spherical harmonics Ykq* (u, f )
with coefficients determined by the amplitude of the cor-

responding polarization moment in the polarization state
of the ensemble. Given a probability distribution
rJJ(u, f ), the polarization moments rq

k and thus the
density-matrix elements rmm8 can be recovered using the
orthonormality of the spherical harmonics, so all three
are complete and equivalent descriptions of the ensemble-
averaged polarization. All three descriptions can be use-

ful in calculations, especially in the large-J limit, for
which rJJ(u, f ) corresponds (apart from a normalization
factor2) to the classical probability distribution of the an-
gular momentum direction.

For large angular momentum the expression for
rJJ(u, f ) in terms of the density-matrix elements rmm8 is
simplified considerably.83,84 From Eq. (A9) we have

rJJ~u, f ! 5 ~2J !!(
mm

exp~im

@~J 2 m 2 m/2

rJJ~u, f ! '
~2J !!

4J (
m

~1 2 m

@~J 2 m 2 m/2

~2J !!

4J

~1 2 m/J !J2m~1 1 m/J !J1m

@~J 2 m 2 m/2!!~J 1 m 2 m/2!!~J 2 m 1 m/2!!~J
rJJ~u, f ! 5 ^JJ ~u,f !uruJJ ~u,f !&

5 (
m1m2

Dm1J
J* Dm2J

J rm1m2

5 (
mm

Dm1m/2,J
J* Dm2m/2,J

J rm1m/2,m2m/2 ,

(A12)

where we have used the substitution m1,2 5 m 6 m/2.
The D-functions can be evaluated for the special case of
interest here [Eq. 4.17(8)], giving

The factor depending on u can be written

@cos~u/2!#2~J1m !@sin~u/2!#2~J2m !

5 @1/4~1 2 cos u!12m/J~1 1 cos u!11m/J#J,

(A14)

and for large J has a sharp peak centered at cos u
5 m/J. Thus as J → `, for a given u only the term m
5 J cos u contributes to the sum, and we can write

For physical situations of interest we can assume that
only a limited number of polarization moments are
present (k ! 2J), which implies that only density-matrix
elements rm1m/2,m2m/2 with m/2 ! J are nonzero. For
these terms in the sum, the factor with explicit depen-
dence on J can be simplified using Stirling’s approxima-
tion n! ' nne2n:

Thus in this limit we have

rJJ~u, f ! ' (
m

exp~imf !rm1m/2,m2m/2 . (A17)

For example, if one uses linearly polarized light to excite
a molecular transition between states with the same J in
the ground and excited state (Q-type transition) in the ab-

cos~u/2!#2~J1m !@sin~u/2!#2~J2m !rm1m/2,m2m/2

1 m 2 m/2!!~J 2 m 1 m/2!!~J 1 m 1 m/2!!#1/2
. (A13)

!J2m~1 1 m/J !J1m exp~imf !rm1m/2,m2m/2

1 m 2 m/2!!~J 2 m 1 m/2!!~J 1 m 1 m/2!!#1/2
. (A15)

m 1 m/2!!#1/2
'

~2J !!

4J

~1 2 m/J !J2m~1 1 m/J !J1m

~J 2 m !!~J 1 m !!
' 1.

(A16)
f !@

!!~J

/J

!!~J

1
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sence of a magnetic field, only diagonal density-matrix el-
ements will be nonzero. We can calculate these matrix
elements according to the simple formula8

rmm 5 3m2/J~J 1 1 !~2J 1 1 ! . (A18)

Only one summand is left in Eq. (A17). Using m
5 J cos u we immediately get

rJJ~u, f ! ' 3 cos2 u/2J 1 1 . (A19)

The first three authors can be reached by e-mail at
ealex@online.ru, mauzins@latnet.lv, and
budker@socrates.berkeley.edu, respectively.
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52. J. D. Xu, G. Wäckerle, and M. Mehring, ‘‘Optical detection
of spin multipole order in the ground state of alkali atoms,’’
Z. Phys. D 42, 5–13 (1997).

53. A. B. Matsko, I. Novikova, G. R. Welch, and M. S. Zubairy,
‘‘Enhancement of Kerr nonlinearity by multiphoton coher-
ence,’’ Opt. Lett. 28, 96–98 (2003).
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