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Abstract. Measurements were made to determine the density of rubidium
dimer vapor in paraffin-coated cells. The number density of dimers and atoms in
similar paraffin-coated and uncoated cells was measured by optical spectroscopy.
Due to the relatively low melting point of paraffin, a limited temperature range
of 43–80 ◦C was explored, with the lower end corresponding to a dimer density
of less than 107 cm−3. With 1 min integration time, a sensitivity to dimer number
density of better than 106 cm−3 was achieved. No significant difference in dimer
density between the cells was observed.
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1. Introduction

For metrology with atomic spins, the spin-projection-noise-limited sensitivity scales as the
square root of the spin relaxation time [1, 2]. Unfortunately, for thermal vapors in closed
containers, collisions with the cell walls typically destroy atomic spin after just one bounce.
An early solution to this problem was to fill cells with high densities of a gas with very low
polarizability, such as noble gases, which prevents atoms from reaching the cell walls over
diffusion-limited times of the order of seconds [3]. However, in these so-called buffer-gas
cells, spin relaxation still occurs via spin-destruction collisions with the noble gas species, and
ensemble dephasing can reduce sensitivity when magnetic field gradients are present.

Early work on optical pumping led to the striking realization that if the walls of an
alkali-metal vapor cell were coated with paraffin (hydrocarbon chains, CnH2n+2), the atomic
polarization relaxed at a much slower rate [4]. Shortly thereafter, vapor cell technology
improved to the point where cells with high-quality paraffin coatings enabled polarized alkali
atoms to bounce between the cell walls up to 10 000 times before they depolarized [5].
These early reports of the remarkable qualities of paraffin have led to widespread application
of coated cells in areas where long-lived atomic polarization is desired—for example,
in optical magnetometers [2], [6]–[10], quantum memories [11]–[15] and atomic clocks
[16, 17]. Measurements with paraffin-coated cells without buffer gas are relatively immune
to small magnetic field gradients and currently hold the record for the longest alkali-vapor spin
relaxation times—up to 1 min for Rb atoms at near-zero magnetic field [18].

While paraffin-coated cells have been used for over half a century, the micro-chemistry
of the surface coatings has only recently been explored [19], and the atomic depolarization
mechanisms in these cells [20]–[22] are still not fully understood. In a simple model of an
evacuated alkali-vapor cell at room temperature, the two dominant sources of depolarization
are due to atom–atom ‘spin-exchange’ collisions and atom–wall collisions. Recently, evidence
for unexplained additional relaxation due to ‘electron spin-randomization’ collisions has been
observed for Rb, Cs and K in paraffin-coated vapor cells [17, 22, 23]. Understanding additional
sources of relaxation is especially important in light of the discovery of new cell coatings that
operate at higher temperatures (corresponding to higher vapor density) [24]–[26] and the very
recent advent of a new coating that enables nearly 1 million bounces before depolarization [18].

In this paper, we examine whether gaseous impurities, of which homonuclear diatomic
molecules (dimers) are the most abundant, are a substantial source of atomic-spin relaxation
in paraffin-coated cells. In [17], the ‘electron spin-randomization’ collisions were shown to
contribute ∼10 Hz to the atomic magnetic resonance line widths at 43 ◦C. For collisions with
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dimers, to explain such an effect, the dimer density would have to be approximately four orders
of magnitude greater than the thermodynamic equilibrium density, assuming an atom–dimer
electron spin-randomization cross section of the order of 10−14 cm−2 [27]. As dimer formation
involves a three-body collision that is most likely to occur near a surface (see, for example, [28]),
hypotheses were formulated that paraffin might catalyze the formation of dimers resulting in
vapor densities greatly exceeding those expected for a non-interacting vapor in thermodynamic
equilibrium [29].

We measured the relative dimer and atom densities in both coated and uncoated cells
in order to test for these possible effects. The detection of dimers in paraffin-coated cells
presents a significant technical challenge, as the melting temperature of paraffin is . 80 ◦C
[30], corresponding to a dimer density of . 5 × 108 cm−3 (typical molecular spectroscopy
experiments are performed in the range 250–400 ◦C where dimer number densities are between
1013 and 1015 cm3 [31]–[33]). At such low temperatures, optical absorption is highly suppressed,
as the dimer population is spread over many ro-vibrational levels, so we used fluorescence to
measure dimer density. By using frequency-modulation techniques, we achieved a sensitivity
to dimer number densities of ∼106 cm−3 after 1 min of averaging and were therefore able to
operate at low enough temperatures to avoid melting the coating.

2. Theory

The law of mass action, when applied to a gas of element, X, in a closed cell reveals that the
thermodynamic equilibrium condition is N 2

X/NX2 = Z 2
X/ZX2 (see, for example, [34]), where N

is the total number of gas-phase particles and Z is the single-particle partition function. If we
can assume that the particles do not interact with each other or the cell walls, then for alkali
atoms in the ground state (electronic angular momentum J = 1/2), the sum over all momentum
and internal states gives a number density ratio of

[X]2

[X2]
≈

(
πmkBT

h2

)3/2
(4I + 2)2

F(T )
, (1)

where m is the atomic mass, kB is the Boltzmann constant, T is the ambient temperature, I is
the nuclear spin and the square brackets refer to number density. F(T ) is the sum over internal
dimer states given by

F(T ) =
eD0/kBT

1 − e−ωe/kBT
(2I + 1)


I

∞∑
J=0

(2J + 1)e−Be J (J+1)/kBT

+
∞∑

J ′=0

(4J ′ + 3)e−Be(2J ′+1)(2J ′+3)/kBT

, (2)

where Be is the rotational constant, ωe is the vibrational constant and D0 is the dissociation
energy for the ground electronic molecular state [34]. This ratio depends only on spectroscopic
constants and temperature and is therefore a cell-geometry invariant measure that can be
compared to the observed vapor density.

3. Experiment

Three cylindrical (1.7 cm length, 2.0 cm diameter) isotopically enriched (>90%) 87Rb vapor
cells were used, labeled P1, B1 and P2 (the P stands for paraffin and B for buffer gas). Cells P1
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Figure 1. Experimental apparatus used for fluorescence detection of dimers.
Using frequency-modulation techniques, the number density of dimers and
atoms in cells housed in an oven with optical access was measured by exciting
with light from a 683 nm laser and collecting fluorescence around 710 nm.
Fluorescence from an uncoated cell in a second, nearly identical oven operating
at 150 ◦C was used to stabilize the laser frequency. The atomic densities were
measured by detecting the D2 absorption spectrum using a 780 nm laser. PMT,
photomultiplier tube.

and P2 were paraffin-coated cells prepared following the procedure described in [35], while B1
was an uncoated cell containing 3 Torr of Ne buffer gas. To check that the cell coatings were
of high quality, spin relaxation measurements were performed using a modified ‘relaxation in
the dark’ technique [36] outlined in [22]. These measurements revealed spin relaxation times of
97(13) ms, 94(11) ms and 5(2) ms for P1, P2 and B1, respectively7, which are within the range
of typical values for paraffin-coated and low-pressure buffer-gas cells [2, 37].

The apparatus is shown in figure 1. To monitor dimer density, light from a wavelength-
stabilized 683 nm laser diode with a volume holographic grating was split by a beam
splitter and directed into the heated vapor cells, exciting the Rb2 X16g → B15u electronic
transition. The excitation wavelength was chosen because it is near the band head of the
X16g → B15u transition, and other optical transitions, for example to the A16u excited state,
can be neglected. For all measurements, the laser intensity was ∼0.1 W cm−2, chosen to
maximize fluorescence intensity while remaining in the linear absorption regime. The laser
current was modulated to produce sinusoidal frequency oscillations with a modulation depth of
∼500 MHz (of the order of the Doppler broadened line widths) and a modulation frequency of
90 kHz. The central frequency of the laser was scanned by a slower current ramp over a range
of ∼5 GHz (∼0.2 cm−1) at a repetition rate of 100 Hz. The fluorescence from each cell was
collected by a lens with a collection efficiency (percentage of total fluorescence) of ∼0.5%,
spectrally filtered with an interference filter, and detected with a red-sensitive photomultiplier

7 Using this technique, there are actually two time constants that characterize spin relaxation (see, for
example, [19]). For simplicity, we have quoted the longer of the two times, which is, for the cells studied in
this work, approximately two times longer than the shorter time constant.
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tube. The interference filter was tilted to transmit light at 710 nm (full-width at half-maximum
(FWHM) = 12 nm), which maximized the transmitted fluorescence intensity. The resulting
spectra are referred to as excitation spectra throughout this paper. The excitation spectrum from
a reference cell maintained at 150 ◦C was used to stabilize the laser frequency against drifts.
Both signals were demodulated with lock-in amplifiers and averaged for approximately 1 min
with an oscilloscope. As the resulting spectra are approximately the frequency derivatives of the
unmodulated spectra, they are referred to as derivative spectra here.

For temperature-dependence studies, an oven, consisting of two high-temperature heat-
tape spools and isolating cell mount, heated the cells with a variable equilibrium temperature
in the range 43–140 ◦C. Two thermocouples placed at different locations near the surface of
the cell monitored the temperature. The atomic vapor density was monitored by analyzing
the absorption of light from a 780 nm laser that scanned across the Rb D2 line. The
collection efficiency for each cell was periodically measured by simultaneously recording the
D2 absorption and fluorescence spectra at low temperature, using the same optical path and
collection geometry as for dimer fluorescence.

4. Results

Figure 2(a) shows the atomic number density as a function of temperature for the uncoated
and two paraffin-coated cells. The atomic number density was determined by fitting the
absorption spectra with a linear absorption model. The experimental values are consistent with
the empirical formulae in [38] to within the error bars, which are dominated by uncertainty in
temperature measurement.

Figure 2(b) shows an example of both unmodulated and derivative dimer excitation spectra
around 14 645.5 cm−1 for paraffin-coated cell P2 and uncoated cell B1 along with a calculated
excitation spectrum. The transition frequencies and Franck–Condon factors were calculated
using spectroscopic data from [31, 32]. The excitation probability was calculated by weighting
the Franck–Condon factors for each allowed X16g → B15u vibrational transition [31, 32]
by the thermal equilibrium occupancy of the relevant ro-vibrational states in the ground
electronic state, while the emission probability was determined by weighting the vibrational
Franck–Condon factors for the relevant excited-state vibrational levels by the spectral profile of
the interference filter. As seen in figure 2(b), the unmodulated excitation spectrum is consistent
with the calculated spectrum to within the ∼0.01 cm−1 precision of the calculated transition
frequencies [31].

For extracting the dimer density, each derivative spectrum was fitted with an empirical
function of five Gaussian derivatives. Figure 2(c) depicts the dimer number density versus
temperature for each cell. The mean of the amplitudes of each of the three central peaks (labeled
with asterisks in figure 2(b)) was normalized by the collection efficiency for the respective cell
to give the overall fluorescence amplitude at each temperature. This fluorescence amplitude is
directly proportional to the dimer density. The absolute dimer number density was estimated
by assuming that the vapor in the uncoated cell, B1, obeys the thermodynamic equilibrium
condition given by the law of mass action, and fitting equation (1) to the B1 values to obtain the
scaling factor. The data from all three cells agree with the model for thermodynamic equilibrium
to within the uncertainty (∼106 cm−3 for the lowest temperatures studied here).
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Figure 2. Results of dimer and atom number density measurements. (a) Atom
number density as a function of temperature (as measured by a thermocouple)
for each cell along with empirical number density from [38]. Horizontal error
bars are estimated based on thermal gradients in the oven, and vertical error
bars take into account uncertainties in the Doppler width and isotope fraction
as well as standard error in the fit. (b) Dimer excitation spectra after 1 min of
averaging in cells B1 and P2. The derivative signals at 63 ◦C obtained from the
lock-in amplifier for both cells (black points, offset from zero for visual clarity)
are plotted alongside fits of the phenomenological function described in the text
(magenta). The unmodulated spectrum for B1 at 140 ◦C is also shown, divided by
200 for visual clarity. Asterisks label the peaks used to determine number density.
The calculated transition frequencies and amplitudes are illustrated with black
lines at the bottom. (c) Dimer fluorescence amplitude (normalized as discussed
in the text) as a function of temperature for all cells along with the theoretical
number density from equation (1) (scaled to fit B1). The horizontal error bars are
the same as in (a) and vertical error bars are largely dominated by the uncertainty
in fluorescence collection efficiency, with the remainder coming from statistical
uncertainty from the fits.
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5. Conclusion

The atom and dimer number densities in the uncoated and two paraffin-coated cells over the
temperature range examined in this work are consistent with the thermodynamic equilibrium
values. At ∼43 ◦C, the observed differences in dimer number densities are smaller than
∼106 cm−3, which means that dimer densities in paraffin-coated cells are not a significant source
of atomic spin relaxation. Even at the paraffin melting temperature of ∼80 ◦C, the broadening of
magnetic resonances due to dimer–atom collisions is at the negligibly low level of tens of mHz.
The technique developed in this work is well suited for studying light desorption of dimers
from the cell coating, an effect that has been known to dramatically increase atomic vapor
densities [22, 35], [39]–[41].

Acknowledgments

This work was supported by ONR MURI grant no. N-00014-05-1-0406, NSF grants PHY-
0855552 and PHY-0652824 and an NSF/DST Indo-US Collaboration grant. The authors are
grateful to A I Okunevich, M Tamanis, O Nikolayeva, K Ravi, A Sharma and J Higbie for
useful discussions and to B P Das for his support of the project.

References

[1] Braginski V B and Vorontsov Y I 1975 Sov. Phys.—Usp. 17 644
[2] Budker D and Romalis M 2007 Nature Phys. 3 227
[3] Dicke R H 1953 Phys. Rev. 89 472
[4] Robinson H, Ensberg E and Dehmelt H 1958 Bull. Am. Phys. Soc. 3 9
[5] Bouchiat M A and Brossel J 1966 Phys. Rev. 147 41
[6] Aleksandrov E B, Balabas M V, Vershovskii A K and Pazgalev A S 2004 Tech. Phys. 49 779
[7] Acosta V, Ledbetter M P, Rochester S M, Budker D, Jackson-Kimball D F, Hovde D C, Gawlik W, Pustelny

S and Zachorowski J 2006 Phys. Rev. A 73 053404
[8] Balabas M V, Budker D, Kitching J, Schwindt P D D and Stalnaker J E 2006 J. Opt. Soc. Am. B 23 1001
[9] Ledbetter M P, Acosta V M, Rochester S M, Budker D, Pustelny S and Yashchuk V V 2007 Phys. Rev. A

75 023405
[10] Wasilewski W, Jensen K, Krauter H, Renema J J, Balabas M V and Polzik E S 2010 Phys. Rev. Lett.

104 133601
[11] Budker D, Kimball D F, Rochester S M and Yashchuk V V 1998 Phys. Rev. Lett. 83 1767
[12] Julsgaard B, Sherson J, Cirac J I, Fiurasek J and Polzik E S 2004 Nature 432 482
[13] Sherson J F, Krauter H, Olsson R K, Julsgaard B, Hammerer K, Cirac I and Polzik E S 2006 Nature 443 557
[14] Klein M, Hohensee M, Nemiroski A, Xiao Y, Phillips D F and Walsworth R L 2009 Appl. Phys. Lett.

95 091102
[15] Lvovsky A I, Sanders B C and Tittel W 2009 Nature Photon. 3 706
[16] Frueholz R P, Volk C H and Camparo J C 1983 J. Appl. Phys. 54 5613
[17] Budker D, Hollberg L, Kimball D F, Kitching J, Pustelny S and Yashchuk V V 2005 Phys. Rev. A 71 012903
[18] Balabas M V, Karaulanov T, Ledbetter M P and Budker D 2010 Polarized alkali vapor with minute-long

transverse spin-relaxation time Phys. Rev. Lett. at press (arXiv:1005.1617v1 [physics.atom-ph])
[19] Seltzer S J et al 2010 Investigation of anti-relaxation coatings for alkali-metal vapor cells using surface

science techniques arXiv:1002.4417v1 [physics. chem-ph]
[20] Robinson H G and Johnson C E 1982 Appl. Phys. Lett. 40 771
[21] Liberman V and Knize R J 1986 Phys. Rev. A 34 5115

New Journal of Physics 12 (2010) 083054 (http://www.njp.org/)

http://dx.doi.org/10.1070/PU1975v017n05ABEH004362
http://dx.doi.org/10.1038/nphys566
http://dx.doi.org/10.1103/PhysRev.89.472
http://dx.doi.org/10.1103/PhysRev.147.41
http://dx.doi.org/10.1134/1.1767891
http://dx.doi.org/10.1103/PhysRevA.73.053404
http://dx.doi.org/10.1364/JOSAB.23.001001
http://dx.doi.org/10.1103/PhysRevA.75.023405
http://dx.doi.org/10.1103/PhysRevLett.104.133601
http://dx.doi.org/10.1103/PhysRevLett.83.1767
http://dx.doi.org/10.1038/nature03064
http://dx.doi.org/10.1038/nature05136
http://dx.doi.org/10.1063/1.3207825
http://dx.doi.org/10.1038/nphoton.2009.231
http://dx.doi.org/10.1063/1.331820
http://dx.doi.org/10.1103/PhysRevA.71.012903
http://arxiv.org/abs/1005.1617v1
http://arxiv.org/abs/1002.4417v1
http://dx.doi.org/10.1063/1.93279
http://dx.doi.org/10.1103/PhysRevA.34.5115
http://www.njp.org/


8

[22] Graf M T, Kimball D F, Rochester S M, Kerner K, Wong C, Budker D, Alexandrov E B, Balabas M V and
Yashchuk V V 2005 Phys. Rev. A 72 023401

[23] Guzman J S, Wojciechowski A, Stalnaker J E, Tsigutkin K, Yashchuk V V and Budker D 2006 Phys. Rev. A
74 053415

[24] Seltzer S J, Rampulla D M, Rivillon-Amy S, Chabal Y J, Bernasek S L and Romalis M V 2008 J. Appl. Phys.
104 103116

[25] Seltzer S J and Romalis M V 2009 J. Appl. Phys. 106 114905
[26] Rampulla D M, Oncel N, Abelev E, Yi Y W, Knappe S and Bernasek S L 2009 Appl. Phys. Lett. 94 041116
[27] Kadlecek S, Anderson L W, Erickson C J and Walker T G 2001 Phys. Rev. A 64 052717
[28] Clarke J F and McChesney M 1964 The Dynamics of Real Gases (Washington, DC: Butterworths)
[29] Okunevich A I 2006 private communication
[30] Rahman C and Robinson H G 1987 IEEE J. Quantum Electron. QE-23 452
[31] Amiot C and Verges J 1997 Chem. Phys. Lett. 274 91
[32] Seto J Y, Le Roy R J, Verges J and Amiot C 2000 J. Chem. Phys. 113 3067
[33] Ban T, Aumiler D and Pichler G 2005 Phys. Rev. A 71 22711
[34] Budker D, Kimball D F and DeMille D 2008 Atomic Physics: Exploration through Problems and Solutions

2nd edn (New York: Oxford University Press) problem 7.4
[35] Alexandrov E B, Balabas M V, Budker D, English D, Kimball D F, Li C H and Yashchuk V V 2002 Phys.

Rev. A 66 042903/1
[36] Franzen W 1959 Phys. Rev. 115 850
[37] Frueholz R P and Volk C H 1985 J. Phys. B: At. Mol. Opt. Phys. 18 4055
[38] Lide D 2007 CRC Handbook of Chemistry and Physics 88th edn (Boca Raton, FL: CRC Press)
[39] Gozzini A, Mango F, Xu J, Alzetta G, Maccarrone F and Bernheim R 1993 Nuovo Cimento D 15 709
[40] Mariotti E, Atutov S, Meucci M, Bicchi P, Marinelli C and Moi L 1994 Chem. Phys. 187 111
[41] Karaulanov T et al 2009 Phys. Rev. A 79 012902

New Journal of Physics 12 (2010) 083054 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevA.72.023401
http://dx.doi.org/10.1103/PhysRevA.74.053415
http://dx.doi.org/10.1063/1.2985913
http://dx.doi.org/10.1063/1.3236649
http://dx.doi.org/10.1063/1.3073711
http://dx.doi.org/10.1103/PhysRevA.64.052717
http://dx.doi.org/10.1109/JQE.1987.1073365
http://dx.doi.org/10.1016/S0009-2614(97)00634-9
http://dx.doi.org/10.1063/1.1286979
http://dx.doi.org/10.1103/PhysRevA.71.022711
http://dx.doi.org/10.1103/PhysRevA.66.042903
http://dx.doi.org/10.1103/PhysRev.115.850
http://dx.doi.org/10.1088/0022-3700/18/20/009
http://dx.doi.org/10.1007/BF02482437
http://dx.doi.org/10.1016/0301-0104(94)00192-8
http://dx.doi.org/10.1103/PhysRevA.79.012902
http://www.njp.org/

	1. Introduction
	2. Theory
	3. Experiment
	4. Results
	5. Conclusion
	Acknowledgments
	References

