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Abstract. The paper presents a discussion on the problem of alignment-orientation conversion in an excited
state of molecules. It is shown that a rather strong alignment-orientation conversion effect in the excited
molecular state can be caused by a joint action of an external magnetic field and hyperfine interaction. The
orientation thus created is transverse, i.e. perpendicular to the direction of the external magnetic field.
The magnitude of this effect is analyzed as dependent on molecular parameters.

PACS. 32.60.+i Zeeman and Stark effects – 32.10.Fn Fine and hyperfine structure

1 Introduction

Usually, if an ensemble of atoms or molecules is excited by
linearly polarized light the spatial distribution of angular
momentum of excited state particles possesses alignment.
That means that the cylindrical symmetry of excitation
light polarization vector E, that can be characterized by a
double-head arrow⇐==⇒, is transferred to the ensemble
of atoms or molecules.

An interest about processes, that can break this sym-
metry and cause alignment-orientation conversion has
been alive already for a long time. As a result, one may
expect an appearance of angular momentum distribution
that can be characterized by a single-head arrow =⇒. Ex-
perimentally appearance of an orientation can be detected
as an emergence of circularly polarized fluorescence from
such an ensemble of particles.

The possibility of conversion from alignment to orien-
tation under the effect of anisotropic collisions was first
considered by Lombardi [1] and Rebane [2]. They have
shown that partial alignment-orientation conversion in an
ensemble of atoms may be induced by anisotropic col-
lisions when the angle between the direction of these
anisotropic collisions and that of alignment differs from
0 or ±π/2. The theoretical prediction was soon after con-
firmed in experimental observation [3,4].

The other group of works deals with electric field ef-
fects. Lombardi [5] described a circularity signal from He
in a high-frequency capacitative electrodeless helium dis-
charge. Necessary initial alignment in this case was pro-
duced by joint action of collisions with electrons and ac-
tion of an external field. The electric field of the discharge
was considered as a perturbing factor able to produce
an orientation signal. Later the alignment-orientation
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conversion caused by external electric field leading to
quadratic Stark effect in atoms or molecules was consid-
ered in great detail in [6–8]. This effect was suggested to
be used to orient molecules selectively in beam experi-
ments [9]. Recently alignment-orientation conversion in an
electric field was utilized for measuring permanent dipole
moments and Λ-doubling constants in NaK molecules [10].

In general, the main reason why an electric field is able
to convert alignment into orientation is because an electric
field is characterized by a polar vector. At the same time
it is known that magnetic field, which is characterized by
an axial vector can not change the symmetry of angular
momentum distribution.

However, this obstruction can be circumvented if in
addition to the linear Zeeman effect there exist any per-
turbing factors causing slight non-linearity in the primar-
ily linear Zeeman effect. For example, as such a perturbing
factor can serve hyperfine interaction in atoms or
molecules. For the first time alignment-orientation con-
version as a result of hyperfine interaction was predicted
theoretically [11] and demonstrated experimentally by
Lehmann [12]. He studied optical pumping of a diamag-
netic ground state of atoms possessing magnetic hyper-
fine structure. Atoms were excited by an unpolarized light
beam in presence of an external magnetic field. Joint ac-
tion of hyperfine interaction and the external magnetic
field directed along the unpolarized exciting light beam
caused appearance of a longitudinal (along the magnetic
field direction) orientation. This effect can be considered
as a kind of magnetic dichroism.

Vigué with his colleagues studied theoretically as well
as measured experimentally in an iodine molecule the
appearance of a longitudinal orientation in an external
magnetic field as a result of predissociation [13–15]. Such
orientation can take place as a direct consequence of in-
terference between magnetic and natural predissociation.
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Not so long time ago it was shown theoretically as well
as demonstrated experimentally that an external magnetic
field can slightly mix together molecular states with op-
posite parity and, as a result, can cause the appearance
of transverse orientation (perpendicular to the direction
of the external field) from an initially aligned ensemble
of molecules. It needs for this that the initial alignment
is created in a direction differing from 0 or ±π/2 with
respect to the external field and that the intramolecular
interaction-caused Zeeman effect deviates slightly from a
linear one [16,17].

In this paper we will demonstrate that the external
magnetic field in the presence of hyperfine interaction can
cause the appearance of a transverse orientation as well.
In other words, we will demonstrate that the hyperfine
structure (HFS) in an external magnetic field can cause
the appearance of a kind of magnetic birefringence.

2 Orientation of the molecules

An easy way to characterize the angular momentum dis-
tribution in an ensemble of atoms or molecules consists in
applying an angular momentum quantum density matrix.
Let us consider a molecule possessing hyperfine structure
which is placed in an external magnetic field. Let us fur-
ther assume that angular momentum alignment in the ex-
cited state of this molecule is created by an absorption
of linearly polarized light with an arbitrarily directed E
vector. In this situation the density matrix, that character-
izes coherence between magnetic sublevels with quantum
numbers M and M ′ for an ensemble of molecules in an
excited state can be calculated as [18]

klfMM ′ =
Γ̃p

Γ + ikl∆ωMM ′

×
∑
jµ

〈γkM | Ê∗·D̂ |ηjµ〉 〈γlM ′| Ê∗·D̂ |ηjµ〉∗ . (1)

In this equation Γ̃p is a reduced absorption rate, Γ is the
excited state relaxation rate and kl∆ωMM ′ is the split-
ting of magnetic sublevels M and M ′ belonging to the
excited state levels k and l. Magnetic quantum numbers
of the ground state level ηj are denoted by µ and the mag-
netic quantum numbers of the excited state level γk by M
or M ′.

In an external magnetic field the ground and excited
state levels ηj and γk are not characterized any more by
total angular momentum quantum numbers F ′′ and F ′

respectively, but are mixture of these states

|γkM〉 =
F ′=J′+I∑
F ′=J′−I

C
(e)
kF ′ |F ′,M〉 ,

|ηjµ〉 =
F ′′=J′′+I∑
F ′′=J′′−I

C
(g)
jF ′′ |F ′′, µ〉 (2)

created by an external field. C(e)
kF ′ , C

(g)
jF ′′ are the wave func-

tion expansion coefficients that represent the expansion of
the molecular state in a magnetic field over the wave func-
tions of hyperfine levels in absence of an external field. The
method for calculating these coefficients will be described
further.

There are several methods how to tell whether or not
a particular molecular state described by a density ma-
trix (1) possesses orientation. One possibility is to expand
this matrix over the irreducible tensorial operators. These
expansion coefficients can directly be attributed to the
alignments and the orientation of the molecular ensemble
[7,19,20]. This method was used previously to analyze hy-
perfine interaction in the H2 molecule and the influence of
this interaction on the polarization of laser-induced fluo-
rescence [21]. Another way which will be used in this paper
is to calculate directly the fluorescence circularity rate

C =
I(Eleft)− I(Eright)
I(Eleft) + I(Eright)

(3)

from the density matrix in spontaneous transition from
a particular excited state of the molecule. I(Eleft) and
I(Eright) are the intensities of the fluorescence with op-
posite circularity, if detected at some certain direction
from the source containing excited molecules. If circular-
ity differs form zero, then it means that the ensemble of
molecules in excited state possesses an orientation. This
is a functional way of calculating orientation of molecules,
because in experimental studies this is a most frequently
used approach to registering the appearance of orientation
in an ensemble of molecules or atoms, see for example [6].

Let us assume that we register spontaneous fluores-
cence with a spectral device which does not resolve hyper-
fine components, say, an ordinary monochromator. The
intensity of the fluorescence with definite polarization
characterized by a vector Ef in a spontaneous transition
from the excited state J ′, characterized by a set γk of
levels in an external field, to the ground state J ′′final, char-
acterized by a set ηj of levels, can be calculated, according
to [18], as

I (Ef) = I0
∑
MM ′µ

∑
klj

〈γkM | Ê∗f ·D̂ |ηjµ〉

× 〈γlM ′| Ê∗f ·D̂ |ηjµ〉
∗kl

fM′M . (4)

To calculate the matrix elements entering equations (1, 4)
some technical problems must be solved. Matrix elements
of type 〈γkM | Ê∗·D̂ |ηjµ〉 can be easily expressed through
the matrix elements defined by hyperfine levels of the
molecular states in absence of an external field

〈γkM | Ê∗·D̂ |ηjµ〉 =
∑
F ′F ′′

C
(e)
kF ′C

(g)
jF ′′ 〈F ′M | Ê∗·D̂ |F ′′µ〉 .

(5)



J. Alnis and M. Auzinsh: Alignment-orientation conversion in an external magnetic field 93

To matrix elements defined by hyperfine states the
Wigner-Eckart theorem [7,19,20] can be applied

〈F ′M | Ê∗·D̂ |F ′′µ〉 =
∑
q

(Eq)∗ (−1)F
′−M

×
(
F ′ 1 F ′′

−M q µ

)
〈F ′‖ D̂ ‖F ′′〉 . (6)

Here, the light vector is represented by its components Eq
in a cyclic system of coordinates [7,20]. Finally, the last
reduced matrix element for an axially symmetric system,
such as a diatomic molecule, can be written as [19]

〈F ′‖ D̂ ‖F ′′〉 = (−1)J
′+I+F ′′+1

√
(2F ′ + 1)(2F ′′ + 1)

×
{
J ′ F ′ I

F ′′ J ′′ 1

}
〈J ′‖ D̂ ‖J ′′〉 . (7)

All this allows to calculate an angular momentum distri-
bution in an excited state of a molecule with HFS, if it
absorbs light of definite polarization E while placed in an
external magnetic field. This angular momentum distribu-
tion is characterized by the excited state angular momen-
tum density matrix klfMM ′ (Eq. ( 1)). In turn this density
matrix allows to calculate the degree of circular polariza-
tion of the fluorescence from the ensemble of molecules
and, as a consequence, to determine whether or not the
ensemble of molecules possesses overall orientation.

Nevertheless, to carry out a simulation of the fluores-
cence circularity rate for a particular model situation we
still need to find the energy splitting kl∆ωMM ′ of mag-
netic sublevels of excited state molecules in an external
field and the wave function mixing coefficients C(e)

kF ′ , C
(g)
jF ′′

entering equations (1, 2) respectively. The next section
will describe how these quantities can be determined.

3 A molecule with HFS in an external
magnetic field

The additional energy of a molecule with an electronic
magnetic moment µJ and a nuclear magnetic moment µI
in an external magnetic field B can be written as

EB = −µJ ·B−µI ·B, (8)

where the magnetic moments are connected with the re-
spective angular moments J and I of a molecule

µJ= −gJµB

~
J, µI= −

gIµ0

~
I. (9)

We assume here that the Landé factor g for orbital motion
of an electron is positive.

Molecular wave functions for a molecular rotational
state with HFS created by one nucleus with nuclear spin
quantum number I can be written as

|(JI)FM〉 , (10)

where F is the total angular momentum of the molecule
with projection on the quantization axis z characterized
by quantum number M .

The matrix elements of the respective Hamilton oper-
ator HB can be written as

HB = 〈(JI)FM |EB |(J ′I)F ′M ′〉
=
gJµB

~
B 〈(JI)FM |J |(J ′I)F ′M ′〉

+
gIµ0

~
B 〈(JI)FM | I |(J ′I)F ′M ′〉 (11)

where the operator in the first term acts only upon the
electronic part of the wave function, but in the second
term only upon the nuclei part of the molecular wave func-
tion.

Let us consider each term on the right-hand-side of
(11) separately. In the 〈(JI)FM |J |(JI)FM〉 operator
acts only on the electronic part of the wave function. So,
according to the Wigner-Eckart theorem [19,20], we have

〈(JI)FM |J0 |(J ′I)F ′M ′〉 = (−1)F−M

×
(
F 1 F ′

−M 0 M ′

)
〈(JI)F‖J0 ‖(J ′I)F ′〉 , (12)

and the reduced matrix element can be expanded further

〈(JI)F‖ J0 ‖(J ′I)F ′〉 = (−1)J+I+F
′+1
√

(2F+1)(2F ′+1)

×
{
J F I

F ′ J ′ 1

}
〈J‖J0 ‖J ′〉 . (13)

For the last reduced matrix element we have

〈J‖ J0 ‖J ′〉 =
√
J (J + 1) (2J + 1)δJJ′ . (14)

If we collect all terms together we arrive at

〈(JI)FM |J0 |(J ′I)F ′M ′〉 = (−1)J+I+F ′+F−M+1

×
√

(2F + 1)(2F ′ + 1)J(J + 1)(2J + 1)

×
{
J F I

F ′ J ′ 1

}(
F 1 F ′

−M 0 M ′

)
δJJ′ . (15)

In a similar way for second term we have

〈(JI)FM | I0 |(J ′I)F ′M ′〉 = (−1)J+I+F+F−M+1

×
√

(2F + 1) (2F ′ + 1) I (I + 1) (2I + 1)

×
{
I F J ′

F ′ I 1

}(
F 1 F ′

−M 0 M ′

)
. (16)

Besides, as part of the diagonal elements we have ordinary
HFS. Magnetic dipole HFS

Hm = a
1
2

Λ2

J(J + 1)
[F (F + 1)− J (J + 1)− I (I + 1)] ,

(17)
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a being a magnetic HFS constant, and the electric
quadrupole HFS

H(0)
q = b0

× [3− J(J + 1)] [3X(X + 1)/4− J(J + 1)I(I + 1)]
(2J − 1)J(J + 1)(2J + 3)2I(2I − 1)

(18)

b0 being the usual (longitudinal) electric quadrupole HFS
constant. In addition to this

H(2)
q = ±b2

√
3/2 [3X(X + 1)/4− J(J + 1)I(I + 1)]

(2J − 1)(2J + 3)2I(2I − 1)
(19)

must be considered for Π state [22–24], where the + sign
stands for the e component and the − sign for f com-
ponents. In these equations X = F (F + 1)− J (J + 1)−
I (I + 1). The HFS constant b2 may be called a transversal
HFS constant, because it is associated with the transversal
irreducible component of the electric field gradient.

Energies of molecular states in an external field can be
obtained by a standard procedure by diagonalization of
the Hamilton matrix defined above. Besides, in a process
of matrix diagonalization the coefficients defining the ex-
pansion of the wave function of state in the field over the
hyperfine state wave functions can be obtained as well.

4 Example for NaK

To make calculations for a real molecule and to find out
how large the effect of alignment-orientation conversion
can be for a real system, one must know certain molecular
constants. In particular one must know the orbital Landé
factor gJ and the nuclear Landé factor gI in equation (11)
as well as the molecular hyperfine constants a, b0, b2 en-
tering equations (17–19). Unfortunately, at least some of
these quantities are not known for most of the molecules
in excited state.

Nevertheless, in many cases the necessary molecular
constants can be easily estimated with good accuracy from
the known properties of the nucleus and atomic constants.
In this section we are going to demonstrate how it can be
done. As an example, let us consider the very simple and
widely studied molecule – NaK in its excited D1Π state.
We chose this heteronuclear molecule, because, as it will
be shown further, for this molecule the assumption that
only one nucleus creates HFS can be justified with certain
accuracy. Of course, calculations can be also performed
accounting for influence of both nuclei, but this would
make calculations unnecessary complicated and exceeds
the limits of the present paper.

Let us start with Landé factors. The most accurate
values of the gyromagnetic ratio for nuclei of interest in
Bohr magnetons are gI = −0.000 804 610 8(8) for 23Na
and gI = −0.000 141 934 89(12) for 39K [25]. This means
that the magnetic moment of Na is almost six times larger
than that of K. The electron Landé factor in molecular 1Π
state can easily be calculated as gJ = 1/[J(J + 1)] [26].

Let us continue with HFS constants. The magnetic
HFS constant a can be calculated as

a = 2gIµ2
B

∑
n

(
1
r3

)
av

, (20)

where gI is the Landé factor of a nucleus causing the HFS.
Let us estimate the magnitude of magnetic HF split-

ting constants a for both nuclei of NaK. As pointed out as
early as in [27], the average of

(
r−3
)

av
is taken over only

those electrons which form the angular momentum of a
molecule.

We know that the molecular D1Π state at large inter-
nuclear distance correlates with atomic states 32P for Na
and 42S for K [28]. It means that in this approximation the
K does not contribute to the molecular electronic angular
momentum. For the atomic orbital of Na an estimation
of
(
r−3
)

av
can be done using alkali atom wave functions.

This leads to [19]

1
r3

=
Z2
aZi

n3
∗ (l + 1) (l + 1/2) l

· (21)

The parameters are Za(Na) = 1, n3
∗(Na(3p)) = 2.12, and

Zi(Na) = 7.59 [19]. Obviously, all these numerical values
of constants allow us to conclude that at first approxima-
tion we can neglect the magnetic nuclear splitting caused
by K and deal only with the effect caused by one nucleus,
namely Na.

A direct way, how to estimate the HFS constant a
for Na is to calculate equations (20, 21), and we arrive
at a = 37.3 MHz. This estimate for the molecular amol

can be cross-checked using data that can be obtained di-
rectly from the atomic hyperfine spectrum. From [27] we
know the connection between atomic aat and molecular
amol constants

amol = aat
j (j + 1)
l (l + 1)

· (22)

From [25] we know the atomic magnetic HFS constants
for Na 3P1/2, being a1/2 = 94.3 MHz and for 3P3/2

a3/2 = 18.69 MHz. Making use of (22) we get from two
atomic constants amol = 35.4 MHz and amol = 35.0 MHz
respectively. For final check we can use an experimental
value of r−3 given in [27] explicitly for Na p electrons as
1.65× 1024 cm−3. Using this directly in formula (20), we
again get the very close numerical value a = 34.5 MHz.
The level of coincidence of a values for the NaK molecule,
as estimated by different approaches gives us confidence
in the value obtained. This means that we can use further
the a value around 35 MHz relatively safely.

The magnetic HFS constants b0 and b2 can be cal-
culated according to the expressions b0 = eQq11 and
b2 = eQq−11, where e is the electron charge, Q is the
nucleus quadrupole moment, and qΛΛ and qΛ−Λ are the
longitudinal and transversal electric field gradients respec-
tively. The electric field gradient components qij can be
calculated according to [22,24]

qΛ+µ Λ = 2N (−1)µ 〈−Λ− µ‖ eC(2)
−µ (θ, ϕ) /r3 ‖−Λ〉 ,

(23)
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where N is the number of electrons, and Λ is a quantum
number that represents the angular momentum projection
on the internuclear axis.

At first approximation we can assume that the molecu-
lar orbital consists of two atomic orbitals centered on each
nucleus. Besides, a p orbital is centered on the Na atom,
but on the K atom s one.

For Na we can write

|Λ〉 = ψr (r) YlΛ (θ, ϕ) (24)

and, using an explicit form for the operator C(2)
µ (θ, ϕ) =√

4π/5Y2µ (θ, ϕ) , we can immediately obtain

qΛ+µ Λ = 2N (−1)µ e 〈ψr| r−3 |ψr〉 〈Yl −Λ−µ|C(2)
−µ |Yl −Λ〉

= 2N (−1)µ er−3Cl0l020C
l −Λ+µ
l −Λ 2 µ. (25)

The explicit form for Clebsch-Gordan coefficients allows
us to have

qΛΛ = −2e
5
r−3, qΛ−Λ = −

√
6

2e
5
r−3. (26)

An important point here is that the average r−3 for these
calculations is over all electrons, not only those contribut-
ing to an electron angular momentum, as it was in the
case of magnetic HFS.

For an s orbital it immediately follows from formulae
presented above that qΛΛ = qΛ−Λ = 0. This means that
at first approximation we can assume again that in a HFS
of NaK in D1Π state only the Na nucleus contributes and
that the ratio between electric HFS constants related to
longitudinal qΛΛ and transversal qΛ−Λ components of the
electric field gradient can be obtained from (26).

Most precise data on nuclear quadrupole moments are
available from [29]. Namely, Q

(
23Na

)
= +0.1006(20) b

and Q
(
39K

)
= +0.049(4) b. As far as for closed shell elec-

trons we have the electric field gradient q = 0, probably for
estimates within the same accuracy range as in a case of
magnetic constants we can put numerical values of r−3 for
p electrons obtained in case of a in formulae b = eQqΛΛ.
This gives us a first approximation for b0 = 2.64 MHz.
This value should be close to the experimental one for the
Na atom in 2P state, as it actually is. For the Na atom we
have b = 2.90 MHz [25].

5 Analysis of the observable signals

The analysis performed above allows as to assume that,
at first approximation hyperfine splitting of NaK molecule
is caused only by the Na nucleus, with little influence
from the K nucleus. The following parameters determine
the HFS splitting: nucleus spin of Na I = 3/2, Landé
factor for the Na atom gJ = 0.5, gI = −0.0008. Hy-
perfine constants-magnetic dipole a = 35 MHz, electric
quadrupole b0 = 3 MHz, b2 =

√
6b0. The excited state re-

laxation rate for NaK in D1Πu state is equal to 5×107 s−1

[24,30]. Diagonalization of the Hamilton matrix for the 1Π
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Fig. 1. HFS level splitting in an external magnetic field for
excited molecular state with quantum numbers J = 1, I = 3/2.
Other parameters see in the text.

excited state rotational level J = 1 yields the magnetic
sublevel energies as dependent on the external magnetic
field strength, as depicted in Figure 1. All level crossings
are real, because in a model considered only levels with
coinciding angular projection M values mutually interact.
For levels with the same M but different F it would be
anticrossing, in case they came close in the energy scale.

The considered magnetic field region corresponds to a
situation when the field is of an intermediate strength. For
a very low field strength each hyperfine level experiences
linear Zeeman effect. As the field strength increases, we
are coming to the region when the Zeeman energy is close
to the hyperfine splitting energy and we have an energy
level pattern that is most complicated. If the field is in-
creased further, we arrive at a region when we see normal
Zeeman splitting again (linear Zeeman effect) but in this
case not for a hyperfine level, but for a rotational level
J with quantum number equal to 1. The obtained energy
level pattern allows us to calculate observable signals. As
demonstrated in [6], one may expect an orientation sig-
nal with largest amplitude, if molecules are excited with
linearly polarized light, with the light electric field vector
at the angle π/4 with respect to the external field direc-
tion – the z-axis. Let us assume θ = π/4 and ϕ = 0. To
have a most pronounced signal one must observe circular
polarization of fluorescence in the xy-plane. In our calcu-
lation we assumed that fluorescence circularity as defined
by equation (3) is measured in the direction characterized
by the angles θ = π/2, ϕ = π/2.

Let us consider two possible transition types J ′′initial =
0− J ′ = 1− J ′′final = 0 and J ′′initial = 0− J ′ = 1− J ′′final =
2, where the rotational quantum numbers of the initial,
excited and final state are shown. For these two types of
transition simulated signals are presented in Figure 2.

As it may be seen, the signals reveal a remarkable am-
plitude. We can obtain angular momentum orientation
that leads to the fluorescence circularity of several per-
cents. It must be considered as a circularity rate which
can be measured easily on simple setups [7]. Another im-
portant feature is that these signals have different signs
(different directions of angular momentum orientation)
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Fig. 2. Fluorescence circularity determined by an orientation
of the excited state as dependent on the external magnetic field
strength for two types of molecular transitions: 1 – J ′′initial =
0−J ′ = 1− J ′′final = 0 and 2 – J ′′initial = 0− J ′ = 1− J ′′final = 2.

����� ����� ����� ����� ����� �����

��

�

�

�

�

�

�

�

�

�

�

�

�

&
LU
F
X
OD
UL
W\
�
�

0DJQHWLF ILHOG� 7

Fig. 3. Fluorescence circularity dependence on magnetic field
strength for different values of magnetic hyperfine interaction
constant a; 1− a = 7 MHz, 2− a = 10 MHz, 3− a = 15 MHz,
4− a = 25 MHz, 5− a = 50 MHz, 6− a = 80 MHz.

for different molecular transitions in the final stage of an
excitation-fluorescence cycle.

As far as, in order to determine different properties
of atoms and molecules fluorescence circularity rates are
measured that are even smaller than expected due to hy-
perfine structure, one must be very careful in the analysis
of the signals and keep this possible reason for appearance
of fluorescence circularity in mind.

On the other hand, this effect can be exploited in it-
self to determine hyperfine constants of molecules. In order
to demonstrate this, let us consider an even more simple
situation than the one analyzed above. To make the sig-
nal dependent on just one parameter, let as assume that
only one nucleus of a molecule has non-zero nuclear spin
and that this spin is characterized by a quantum number
I = 1/2. Then, in the same geometry as considered above
for a molecular transition J ′′initial = 0−J ′ = 1−J ′′final = 0,
we can calculate the circularity rate as dependent on the
magnetic hyperfine constant a (values of Landé factors
and relaxation rate are assumed the same as in the pre-
vious example). In Figure 3 one can see the signal as de-
pendent on the magnetic hyperfine constant a. This de-
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Fig. 4. Maximal fluorescence circularity dependence on the
excited state rotational quantum number J ′.

pendence is well pronounced and obviously can be used
for measurements of a.

An important question is, how the magnitude of the
circularity signal is dependent on the excited state angu-
lar momentum value. Obviously, the effect must decrease
when the excited state angular momentum increases. This
follows from a simple model. The total angular momen-
tum F of a molecules is formed by a coupling between
the rotational angular momentum J and the nucleus spin
angular momentum I. In a magnetic field this coupling
breaks down and the total angular momentum F ceases
to exist as a good quantity. Instead the rotational angu-
lar momentum J starts playing the dominant role. If J, F
and I are of the same magnitude, transition form F to
J can considerably influence the signal. This is what we
see in the examples above. If, on the contrary, J is con-
siderably larger than I, then the total and rotational an-
gular momenta almost coincide, and transition from F to
J influences observable signals only insignificantly. In Fig-
ure 4 the maximal circularity amplitude for a transition
J ′′initial = J − 1 → J ′ = J → J ′′final = J − 1 is depicted as
dependent on J . For this calculation the value of a mag-
netic hyperfine constant is assumed as a = 25 MHz. Other
parameters are as for Figure 3. We can see that the am-
plitude of the signal decreases almost exponentially with
increase in J . This means that the influence of hyperfine
structure on the observed signals can be significant only
for very small angular momentum values.

We have considered here a simplified situation when
only one nucleus causes HFS of a molecule. In the case
when two or more nuclear spins are influencing the mag-
netic sublevel pattern in a magnetic field and consequently
the fluorescence signal, the analysis can be performed as
well. For this methods have been developed, see for ex-
ample [27]. Unfortunately, these calculations are rather
laborious.

6 Conclusions

From the discussion above the following conclusions may
be drawn. First, when one measures alignment-orientation
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conversion in presence of an external magnetic field, one
must be very careful in the signal analysis. Besides, the
non-linear effects of a type discussed in references [10,
16], for which intramolecular perturbations are responsi-
ble, similar appearances in experimentally measured cir-
cularity rate can be caused by a hyperfine structure which
is present almost in all atoms and molecules. The circu-
larity rate caused by a joint action of an external mag-
netic field and hyperfine interaction can have an ampli-
tude comparable with, if not larger than some features in
fluorescence circularity dependence on the magnetic field
strength, as observed in experiment and attributed to a
specific intramolecular interaction, see [16]. Of course, as
shown above, the last conclusion is relevant only for molec-
ular states with small rotational angular momentum, and
this was not the case in the experiment cited above.

On the other hand, alignment-orientation transition
can be used for good at certain conditions, in measuring
hyperfine interaction constants in molecules as well as in
atoms. Despite the fact that in the model analyzed above
molecules were used as an example, all description could
be applied to atoms as well.

Besides, in this paper some relations between atomic
and molecular hyperfine structure constants on the one
hand, and between constants a, b0 and b2 in molecules on
the other, have been discussed. This approach can allow
to make estimates of necessary molecular hyperfine inter-
action constants in the cases when only respective atomic
constants are available.
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