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The evolution and revival structure
of angular momentum quantum wave
packets

Marcis Auzinsh

Abstract: In this paper, a coherent superposition of angular-momentum states created by
absorption of polarized light by molecules is analyzed. Attention is paid to the time evolution
of wave packets representing the spatial orientation of the internuclear axis of a diatomic
molecule. Two examples are considered in detail. Molecules absorbing light in a permanent
magnetic field experiencing the Zeeman effect and molecules absorbing light in a permanent
electric field experiencing the quadratic Stark effect. In a magnetic field, we have a wave
packet that evolves in time exactly as a classical dipole oscillator in a permanent magnetic field
(classical-physics picture of the Zeeman effect). In the second case, we have a wave packet
that goes through periodical changes of shape of the packet with revivals of the initial shape.
This is pure quantum behavior. The classical motion of angular momentum in an electric field
in the case of a quadratic Stark effect is known to be aperiodic. Solutions obtained for wave
packet evolution are briefly compared with Rydberg-state coherent wave packets and harmonic-
oscillator wave packets. Zeeman and Stark effects in small molecules continuously attract the
attention of researchers, theoreticians, as well as experimentalists. These investigations allow
us to obtain a deeper understanding of the interaction of molecules with stationary external
fields and also can be used as a practical tool to measure different molecular characteristics,
such as permanent electric or magnetic dipole moments, intramolecular perturbations, etc.
It is worthwhile analyzing these effects as an evolution of wave packets. All this motivates a
comparison of the quantum and classical picture of Zeeman and Stark effects in molecules.

PACS No.: 33.55.Be

Résumé: Nous analysons une superposition cohérente d’états de moment angulaire créés par
absorption de lumière polarisée par des molécules. Nous étudions particulièrement l’évolution
du paquet d’onde représentant l’orientation spatiale de l’axe internucléaire de molécules
diatomiques. Deux exemples sont étudiés avec plus d’attention : des molécules absorbant de la
lumière en expériençant un effet Zeeman dû à un champ magnétique externe et des molécules
absorbant de la lumière en expériençant un effet Stark dû à un champ électrique externe. Dans
le champ magnétique, le paquet d’onde évolue dans le temps exactement comme un oscillateur
dipolaire classique dans un champ magnétique permanent (vue classique de l’effet Zeeman).
Dans le champ électrique, le paquet d’onde subit des changements de forme apériodiques,
avec retours à la forme initiale. Ce comportement est purement quantique. Nous savons que
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l’évolution du moment angulaire classique dans un champ électrique est apériodique. Des
solutions obtenues pour l’évolution du paquet d’onde sont comparées à des paquets d’onde
cohérents de Rydberg et à des paquets d’onde de l’oscillateur harmonique. Les effets Zeeman
et Stark dans les petites molécules continuent d’attirer l’attention des chercheurs, aussi bien
théoriciens qu’expérimentateurs. Ces études permettent de mieux comprendre l’interaction des
molécules avec différents champs stationnaires externes et sont un outil pratique pour mesurer
différentes caractéristiques moléculaires, tels les moments électrique et magnétique permanents,
les perturbations intramoléculaires, etc. Il vaut la peine d’analyser ces effets via l’évolution de
paquets d’onde. Tout cela justifie la comparaison des descriptions classique et quantique des
effets Zeeman et Stark.
[Traduit par la rédaction]

1. Introduction

There are some problems that can be found in every classical-mechanics text book. For example, rotation
of the planets around the Sun under the action of the gravitation force or the oscillations of a pendulum
under the action of the quasielastic force.

In quantum mechanics there are very similar problems of the same importance. The motion of
the electron around the nucleus under the action of the Coulomb force or the vibration of a diatomic
molecule along the line connecting both nuclei. To compare these two sets of problems from which the
first belongs to the macroscopic world and the other to the microscopic world one can ask questions of
the type: Is it possible to observe the motion of an electron in a Kepler orbit around the nucleus in the
same way as it is possible to observe the motion of the planet around the Sun? That is, is it possible to
obtain experimentally a Rutherford atom when an electron rotates around the nucleus in a Kepler orbit?
Is it possible to observe oscillations of the nuclei in a molecule that are similar to classical oscillations
of a point particle bound by a quasielastic force? An affirmative answer to these questions, as is well
known, is given by the correspondence principle of quantum mechanics [1].

The most common way to examine experimentally objects in the micro world is by their interaction
with light. At the same time, it is common wisdom, see, for example ref. 1, that the methods of ordinary
optical spectroscopy generally involve excitation of individual stationary states of atoms and molecules.
Such states describe objects that are quantum mechanical by nature. For example, even for arbitrarily
large quantum numbers a single stationary state of an electron in a Coulomb field does not come close
to describing the motion of a localized particle in a Kepler orbit, just as for any quantum number,
a stationary wave function of a harmonic oscillator does not describe the harmonic oscillations of a
localized particle. In fact, classical motion is never obtained from excitation of a single quantum state.

Recently, with the use of ultrashort optical pulses, it has become possible to create coherent su-
perpositions of many quantum states to obtain localized wave packets that are particlelike objects that
obey quasiclassical laws, see refs. 2,3 and references cited therein. Usually, electrons moving in orbits
with large radii and oscillations of molecules are examined in these experiments. The processes with
these wave packets usually are very fast — often occurring on a picosecond or even on a femtosecond
time scale. These types of processes are most often analyzed to examine correspondence between the
classical and quantum description of the objects in the microscopic world.

The interaction of particles with definite angular momentum with electric and magnetic fields pro-
vides a second, more accessible, but less exploited, way to examine the correspondence between the
quantum and classical nature of the microscopic world. For example, from the view point of classical
physics, the angular-momentum vector of a charged particle spinning in a magnetic field will precess
around the field direction with the Larmor frequency [4]

ωL = gJ µBB

~
(1)

preserving the projection of the angular momentum on the direction of the field. HeregJ is a Lande
factor,µB is the Bohr magneton, andB is the magnetic-field strength. The phenomenon of the precession
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of angular momentum in an external magnetic field has been investigated for several decades and its
history goes back to spin echoes in magnetic resonances, see for example ref. 5 and references cited
therein.

To determine the behavior of a particle — atom or molecule — in an external magnetic field in
quantum mechanics, one must deal with the particle’s angular-momentum states and corresponding
wave functionsYJM(θ, ϕ). To obtain the classical-like motion of quantum angular momentum in an
external field one must analyze the superposition of angular-momentum states. For diatomic molecules,
the squared modulus of this superpositional wave packet9 (θ, ϕ, t) will show the probability of finding
the molecular axis with a certain orientation in space. Namely,|9 (θ, ϕ, t)|2 sinθdθdϕ is the probability
of finding the molecular axis in the direction in space characterized by the spherical anglesθ andϕ.
For the case of molecules, this approach has another advantage. To compare classical and quantum
results usually one wants to examine the behavior of the system as the angular momentum becomes
large.According to the correspondence principle the states with large angular momentum should behave
classically. For the rotational states of molecules it is very common and straightforward to create states
with large angular-momentum quantum numbers, withJ ∼ 100 being typical [6]. The situation is
different for the case of atomic Rydberg states. It is not at all easy to create states with principal
quantum numbern close to 100 in a laboratory [2].

Partially, the problem of obtaining coherent superposition of angular-momentum states was solved
many years ago, when quantum beats in an external magnetic field were observed experimentally for
the first time by Aleksandrov in Russia [7] and by Dodd with co-workers in the United Kingdom [8].
They used light pulses to excite several angular-momentum states|J, M〉 = YJM (θ, ϕ) with the same
angular-momentum quantum numberJ , but different magnetic quantum numbersM simultaneously and
coherently. In an external magnetic field these angular-momentum states have different energiesEM and
hence the corresponding wave functions have different phase factors exp[−i(EM /~)t]. In an experiment,
one can observe the harmonic time dependencies of polarized fluorescence that correspond to the beats
between these wave functions with different phase factors in the same way that in signal processing one
can observe beats between two or more harmonic signals with slightly different frequencies.

From a practical view point, these experiments can be more straightforward than experiments with
Rydberg-state atoms or instant excitation of oscillations in molecules. An obvious reason for this is that
the speed of the processes in an external field usually are slower and, in any case, it can be controlled by
controlling the external field strength. As a result, for the excitation of the state one can use much longer
laser pulses and also observations of the state dynamics can be made by much slower experimental
devices [6].

In this paper, quantum beat experiments will be analyzed by considering the creation and time
evolution of angularly localized wave packets. This unique approach provides an opportunity to examine
the correspondence between classical and quantum-mechanical periodic motion as induced by electric
and magnetic fields. In our knowledge these experiments have not been analyzed before from these
positions.

2. Revival structure of wave packets

The time-dependent wave functions for angularly localized angular-momentum quantum wave packets
formed as a coherent superposition of angular-momentum eigenstates may be written as

9 (θ, ϕ, t) =
∑
M

cMYJM (θ, ϕ) exp

(
−i

EM

~
t

)
(2)

whereYJM (θ, ϕ) is an ordinary spherical function [9] and the coefficientscM are complex amplitudes.
We would like to examine to what extent and for how long time evolution of this wave packet

coincides with the predictions of classical physics. For example, classically, an angular momentum of a
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rotating rigid charge distribution will precess in a magnetic field with the Larmor frequencyωL, see ( 1).
If there is a coincidence between the quantum and classical description, then the position of the “center
of gravity” of a spatially localized wave packet (the average value of the particle’s angular coordinates)
must precess in space according to the rules of classical mechanics [4]

dJ

dt
= µ × B (3)

as is predicted by the Ehrenfest theorem [10,11]. HereJ is a classical angular-momentum vector;µ,
the magnetic dipole moment of particle; andB, the strength of the external magnetic field.

The Ehrenfest theorem states that the quantum mean values of the quantities that characterize motion
in quantum mechanics along with the mean values of the forces acting upon the particles are connected
together exactly in the same way as the respective quantities are connected in classical physics. A
detailed illustration of how the Ehrenfest theorem works in the case of angular-momentum precession
in a magnetic field can be found in ref. 5.

Because classical particles have a definite direction of angular-momentum, wave packets localized
in space usually havecM well-centered around some particular mean quantum numberM. For a sim-
ilar reason, wave packets that can be created from stationary atomic Rydberg-state wave functions are
centered around some definite valuen of the principle quantum numbern of the atomic state. Ryd-
berg wave packets weighted by coefficients possessing Gaussian distribution [12] are particularly well
investigated:

|cn|2 = 1√
2πσ

e−(n−n)/2σ2
(4)

Here the parameterσ characterizes the width of this distribution. Another particularly well-investigated
case is the coherent states of a harmonic oscillator that can be obtained from harmonic oscillator wave
functions|v〉 weighted by coefficients in the form [12]

cv = e−(1/2)|α|2 αv

√
v! (5)

wherev is the vibration quantum number andα is a parameter.
What we are interested in most, when we think about evolution of wave packets, is what are the laws

governing the long-term postclassical evolution of wave packets beyond the bounds of the dynamics
according to the correspondence principle?

The assumption that the weighting probabilities|cM |2 are strongly centered around a mean value
M (or n, v) means that only those states with energiesEM near the valueEM enter appreciably into the
sum of (2). This permits an expansion of the energy in a Taylor series inM around the centrally excited
valueM

EM = EM + E′
M(M − M) + 1

2
E′′

M(M − M)2 + 1

6
E′′′

M(M − M)3 + ... (6)

where each prime onEM denotes a derivative at pointM = M.
The derivative terms in (6) define distinct time scales [1,12]

Tcl = 2π

|E′
M | , trev = 2π

1
2 |E′′

M | , tsr = 2π
1
6 |E′′′

M | (7)

The first time scale,Tcl, is called the classical period. It is the period after which the system returns to its
initial position according to the laws of classical physics. The second time scale,trev, is the revival time.
This is a time after which the initial wave function will be partially or completely rebuilt. The third time
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Fig. 1. Relative population distribution among magnetic substates|J, M〉 for an angular-
momentum state withJ = 20.

scale,tsr, is the superrevival time. It represents the time after which the wave function will be rebuilt
in case it is only partially rebuilt after the revival time. In practice almost alwaysTcl � trev � tsr.
Nevertheless, as we will see in the case of angular momentum in an electric field, this time scale order
in a special situation can also be different.

The initial wave function is rebuilt each time the initial relations att = 0 between the phases of the

wave-function componentsYJM (θ, ϕ) exp
(
−i EM

~
t
)

in summation (2) are restored. The time behavior

of the wave packet can easily be understood if we rewrite (2) with (6) keeping the terms through third
order and disregarding the overall time-dependant phase [12]

9 (θ, ϕ, t) =
∑
M

cMYJM (θ, ϕ) exp

[
−i2π

((
M − M

)
t

Tcl
+
(
M − M

)2
t

trev
+
(
M − M

)3
t

tsr

)]
(8)

For small values of timet the first term in this equation dominates and the wave packet behavior is
periodic with periodTcl. As timet increases a second term in an exponential factor starts to play a role
and causes the wave packet to disperse. When timet approachestrev the second term in the exponential
factor approaches 2π and then plays no further role. Periodic motion with periodTcl is restored again.
The analysis can be continued and in the same manner the next term in the exponential factor of (8)
can be analyzed. This governs the long time revival with characteristic timetsr. At special times that
are rational fractions oftrev, the wave packet gathers into a series of subsidiary waves called fractional
revivals [1].

One particularly good thing about the evolution of angular-momentum wave packets is that we can
know exactly, and to some extent control, thecM distribution that will occur in a realistic experiment
by changing the excitation geometry and polarization of the excitation light.

As an example, let us consider a so calledQ-type of molecular transition when light excites molecules
from the ground state to the excited state and both states have the same value of angular-momentum
quantum numberJ . Let us further assume that the exciting radiation is linearly polarized with the
light electric-field vectorF lying perpendicularly to an external magnetic fieldB. The probability of
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finding molecules in a particular angular-momentum stateYJM (θ, ϕ) can be found by determining
the diagonal elements of the density matrixfMM , which give the population of angular-momentum
substates characterized by a magnetic quantum numberM (for details see Appendix A and refs. 4 and
6)

fMM = |cM |2 =
∑
µ

∣∣〈M| F ∗ · d |µ〉∣∣2
= 1

2

[(
CJM

11JM−1

)2 +
(
CJM

1−1JM+1

)2
]

= 1

2
− M2

2J (J + 1)
(9)

Here〈M| F ∗ · d |µ〉 is the optical transition matrix element,d is the optical transition dipole moment
operator,CJM

11JM−1 is the Clebsch–Gordan coefficient [9], andµ is a ground-state magnetic quantum
number. In this expression Clebsch–Gordan coefficients of the typeCJM

11JM−1 represent the quantum-
mechanical probability to excite an angular-momentum state

∣∣J ′, M
〉
from an initial (usually ground)

state
∣∣J ′′, µ = M − 1

〉
. In this particular case of aQ-type molecular transition, the absorption of light

does not change the angular momentum of the molecule or atom, soJ ′′ = J ′ = J . As an example, for
J = 20,fMM = |cM |2 as calculated from (9) is given in Fig. 1.

Off-diagonal elements of the density matrix represent the coherence (phase relations) between
different angular-momenta substates. Off-diagonal matrix elements can be calculated as

fMM ′ = cMc∗
M ′ =

∑
µ

〈M| F ∗ · d |µ〉 〈M ′∣∣F ∗ · d |µ〉∗ (10)

For Q-excitation with a pulsed light polarized along they axis, besides the diagonal matrix elements
calculated according to (9) we will have the following nonzero off-diagonal matrix elements [4]

fM+1,M−1 = fM−1,M+1 = 1

2
CJM−1

JM1−1C
JM+1
JM11 = −

√(
J 2 − M2

) [
(J + 1)2 − M2

]
4J (J + 1)

(11)

From the density-matrix elements for angular-momentum states, we can easily calculate the squared
wave function that represents the probability density

|9 (θ, ϕ, t)|2 = 3

2J + 1

∑
MM

′
fMM ′YJMY ∗

JM ′ exp(−iω
MM

′ t) (12)

whereω
MM

′ = (
EM − E

M
′
)
/~.

3. Angular-momentum wave packets in a magnetic or an electric field

3.1. Atom or molecule in the external magnetic field
If an atom or molecule is in an external magnetic field experiencing the ordinary Zeeman effect, the
angular-momentum state’sJ magnetic sublevels|J, M〉 with different magnetic quantum numbersM

will have energies

EM(M) = E(0) + gJ µBBM

~
= E(0) + ELM (13)

whereE(0) is the energy of a state in the absence of the external field. According to (7), we can expect
classical periodTcl to be equal to 2π/EL = 2π/(gJ µBB/~). All other periods will be infinite. Thus,
the time evolution of this angular-momentum wave packet will be an infinitely long rotation around the
external magnetic field direction with Larmor angular frequencyωL = 2π/Tcl. No changes apart from
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the rotation in space around the magnetic-field direction will occur to the wave function. This is what
actually has been observed experimentally in the past [13] as a harmonic modulation of an intensity of
a polarized fluorescence from an ensemble of atoms or molecules excited by a short laser pulse. This is
a well known effect of quantum beats induced by a magnetic field.

From the view point of an evolution of a wave packet, this result is similar to the well-known
behavior for coherent states of a harmonic oscillator. In his pioneering paper, Ervin Schrödinger wrote
as early as in 1926, that wave packets formed as coherent states of harmonic oscillator will oscillate
infinitely long between classical turning points without dispersion, for references see ref. 12. The main
reason for this is that the energies of quantum harmonic oscillator states dependlinearly on the vibration
quantum numberv. It means that only the first derivativeE′

v in the expansion of type (6) will differ from
zero. In the case of the Zeeman effect, we observe the same linear energy dependence of the magnetic
sublevels of atomic or molecular states on the magnetic quantum numberM. As a result, according to
(7), we have infinitely long classical-type motion of the wave packet that represents the precession of
angular momentum in a magnetic field. One can easily calculate the angular-momentum distribution
after the pulsed excitation following (10)–(12). This result appears to be independent of the value of
the angular-momentum quantum numberJ . It is

|9 (θ, ϕ, t)|2 = 3

8π

[
1 − sin2 θ sin2(ϕ − ωLt)

]
(14)

We have a donut-shaped wave function that rotates in space around thez axis with Larmor frequency
ωL, (1) [6], see Fig. 2. The fact that the result is independent of the angular-momentum quantum number
J is worthy of mention. It is interesting especially because this distribution coincides precisely with the
result that would appear if we considered absorption of the electric dipole oscillator in classical physics
in the same circumstances. Indeed, if instead of considering artificial wave packets that can only be
studied theoretically, we consider wave packets that can be obtained in a realistic experiment, it is not
uncommon for quantum and classical results to coincide even for small quantum numbers, see ref. 6.
In the classical approach, this donut-shaped distribution of the molecular axis can be understood if one
keeps in mind that forQ-type molecular transitions the absorbing dipole is oriented alongJ , that is,
perpendicularly to the intermolecular axis of the rotating molecule [6].

There are numerous examples when the Zeeman effect in molecules is observed experimentally.
For a review see, for example, ref. 6. In these experiments pulsed optical excitation, leading to the
distribution of the type described by (14), as well as continuous excitation was used. Typical precession
frequencies for molecules in an excited state in these experiments was on the MHz scale (precession
periodT ∼ 10−6 s). It must be mentioned that to obtain this precession frequency in the case of
molecules one must have a considerably stronger magnetic field than in the case of atoms. Typical
magnetic-field strength in experiments with molecules is 0.01–0.1 T.

3.2. Molecule in an external electric field

The evolution of a molecular wave packet in an external electric field is quite distinct from the case of a
magnetic field. For both cases we have the same amplitudescM of the partial components of the wave
function in (2) and the same density matrix. But in case of an electric field we will have a different
magnetic sublevel energyEM dependence on the magnetic quantum numberM. Let us consider a
molecule in a state experiencing a quadratic Stark shift. This is the type of Stark effect most commonly
observed with atoms and molecules. In this case, we will have an energy dependence on the magnetic
quantum number of the form

EM(M) = E(0) + d2E2

hB

[
J (J + 1) − 3M2

2J (J + 1)(2J − 1)(2J + 3)

]
= E(0) + E

(1)
Stark(E) + E

(2)
Stark(E)M2 (15)
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Fig. 2. Wave-function evolution in an external magnetic field. 1 –ωL t = 0, 2 –ωL t = π/4, 3 –ωL t = π/2, 4
– ωL t = 3/4π , 5 –ωL t = π , 6 –ωL t = 5π/4.

We know that in the case of the Stark effect, the classical motion of the angular momentum in an external
electric field is aperiodic [4,14]. This is exactly what we see from (15). The first derivative ofE′

M=0
is

zero and that means thatTcl is infinite. At the same time, the second derivative

E′′
M

= −
[

3d2E2

hBJ(J + 1)(2J − 1)(2J + 3)

]
(16)

differs from zero and one can expecttrev to be different from zero or infinity. This is exactly what was
predicted for Stark quantum beats [15]. Figure 3 depicts one period of evolution of the wave function for
stateJ = 1 excited by linearly polarized light with theF vector lying in thezy plane and forming angle
π/4 with the direction of an external electric fieldE. R-type(J = 0 −→ J = 1) optical transition is
assumed. The analytical expression describing the probability density in Fig. 3 is

|9(θ, ϕ, t)|2 = 3

8π

{
1 − sin2 θ cos2 ϕ + sin 2θ sin 2ϕ cos[(2π/trev)t]

}
(17)

It can be calculated using formulae (10), (12), and the Appendix.
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Fig. 3. Stark quantum beats. 1 –t = 0, 2 – t = 1
5 trev, 3 – t = 1

4 trev, 4 – t = 1
2 trev, 5 – t = 3

4 trev, 6 – t = trev.

An interesting feature of the Stark effect is that the revival time

trev = 4πhBJ(J + 1)(2J − 1)(2J + 3)

3d2E2 (18)

approaches infinity when the angular momentum approaches infinity, it means a particle with very large
angular momentum starts to behave truly classically. This quantum-mechanical revival is not only as a
peculiar behavior of wave function, but as well can be used to orient molecules in beams effectively [16].
From Fig. 3., it can be seen that after half of the revival timetrev/2 the shape of the wave packet is fully
restored only its orientation in space is changed byπ/2. After the complete revival timetrev, the wave
function is restored fully in both shape and spatial orientation. It is worth mentioning, that although the
electric-field intensity that is necessary to achieve easy observable revival time experimentally depends
on the particular molecular constants and angular-momentum quantum number value, in some cases an
extremely week electric field of the order of 10 V/cm is sufficient. Probably other applications of the
periodic behavior of atomic and molecular wave functions in electric fields can be foreseen.

In the last decade the Stark effect in diatomic molecules at stationary optical excitation was used
rather extensively to determine different molecular properties, such as permanent and transition dipole
moments, Lambda doubling constants, etc [17,18].
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4. Summary

This paper brings attention to and illustrates two examples of angular-momentum coherent wave packets
that are of great interest owing to their peculiar properties. Less attention is paid to them than they
deserve. These wave packets describe the precession of internuclear axes of diatomic molecules in an
external field.

The first example was the angular-momentum coherent superposition state created by the absorption
of polarized light by a molecule in an external magnetic field. There are many examples of such wave
packets created in experiments for states of diatomic molecules [13]. But never has the situation of a
coherent superposition of angular-momentum eigenstates been analyzed with the same machinery used
to analyze the coherent superposition of Rydberg states or the coherent states of a harmonic oscillator.
In experiments with molecules absorbing light in permanent external fields very often states with large
rotational angular-momentum quantum numbers ofJ ∼ 100 were involved. This allows us to compare
these states with the behavior of a spinning particle in an external field.

It is known that classical angular momentum in an external magnetic field will precess around the
magnetic-field direction with Larmor frequencyωL.

A quantum wave packet in a magnetic field will experience the same motion. The period of rotation
of the wave packet will coincide perfectly with the period of precession for classical angular momentum.
The wave packet will last forever (actually as long as the excited state of molecule will live). It will not
undergo any disintegration.

There is only one other example known when the wave packet evolves in time without dispersion.
It is the coherent state of the harmonic oscillator [12]. The reason for this type of motion in both cases
is the same. All coherently excited wave functions in these examples represent states that are equally
separated on the energy scale, i.e., the systems have energy levels with equally separated steps.

Another example considered here was the angular-momentum states in an external electric field
causing a quadratic Stark effect. In this case an ensemble of angular momentum will evolve aperiodically
in classical physics [4]. In quantum physics, we will have periodical motion during which the wave
function will periodically disintegrate and then, after a definite period, will go through a revival.

This is quite unique dynamics. It is more usual for systems to have a period of classical motionTcl
that is substantially shorter than the revival timetrev, as is true for the Rydberg states or anharmonic
oscillator states. It means that during one revival period this type of quantum system will undergo many
classical periods. In the example of the quadratic Stark effect in an external electric field, we have exactly
the opposite extreme. The system has no classical period at all. From the view point of classical physics
the system is aperiodic. But quantum evolution of the wave function still has a well-defined period that
becomes longer and longer, when angular moment of system increases and system approaches classical
limit.
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Appendix A: Calculation of density matrix elements

Calculation of the density-matrix elements entering (9) and (10)

fMM ′ =
∑
µ

〈M| F ∗ · d |µ〉 〈M ′∣∣F ∗ · d |µ〉∗ (A.1)

mainly consists in the calculation of quantum-mechanical matrix elements of a type

〈M| F ∗ · d |µ〉 (A.2)

Let us now have a look in more detail at how these matrix elements can be calculated. The first step is
to calculate thedot or scalar product(F ∗ · d) of the light electric-field vectorF and optical transition
dipole momentd. The meaning of this product is very close to that of a scalar or dot product of two
ordinary vectors. Only in this case we are dealing with complex vectors and to find the projection of
one vector onto another or — which is the same — to find “how much of one vector is contained in
another” we must calculate this in a little bit more sophisticated a manner.

We are using here complex vectors, because it is a simple way to describe rotations in quantum
mechanics as well as in classical physics. Let us see how these complex vectors and their components
in acyclic system of coordinates[6,9] can be used to describe, for example, the electric-field vector of
light. Cyclic basis unit vectors are introduced according to the following rules

e+1 = − 1√
2
(ex + iey)

e0 = ez (A.3)

e−1 = 1√
2
(ex − iey)

whereex, ey, ez, are the basis unit vectors in Cartesian coordinates. If we now multiply these cyclic basis
vectors by a phase factor exp(−i�t) that represents some oscillations, for example, the oscillations of
an electric field in a light wave, we can easily see, that for

e+1 (−i�t) = −1/
√

2[ex exp(−i�t) + iey exp(−i�t)]
= −1/

√
2{ex exp(−i�t) + ey exp[−i(�t − π/2)]} (A.4)
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oscillations along thex axis are a quarter period ahead of those along they axis and this means that this
basis vectore+1 can be used to describe a left-handed circular polarized light beam, in thexy plane,
that propagates in the positive direction of thez axis. It means a light wave in which the electric-field
vector rotates counterclockwise if viewed in such a way that the radiation approaches the observer in
the positive direction of thez axis.

In a similar way one can see that thee−1 basis vector represents a right-handed rotation and, in our
particular case, can be used to describe right-handed circular polarized light that propagates along the
z axis with the electric-field vector rotating in a clockwise direction in thexy plane.

Finally, thee0 basis vector represents linear oscillations along thez axis and can be used to describe
linearly polarized light when an electric field oscillates linearly along thez axis. Just as each vector
can be represented by its three Cartesian components, each vector can be represented by its three cyclic
components. In the case of the light polarization vector (and many other vectors in quantum mechanics)
these cyclic components are more practical for calculation than the Cartesian representation.

The arbitrary electric-field vectorF in a light wave as well as any other vector may be resolved over
cyclic unit vectorseq

F =
∑
q

F qeq (A.5)

where the cyclic componentsFq or the vectorF are connected to the Cartesian components of this
vector as

F+1 = − 1√
2
(Fx − iFy)

F 0 = Fz (A.6)

F−1 = 1√
2
(Fx + iFy)

Now let us turn back to the matrix elements of a type(A.2). According to the vector algebra for
cyclic vectors, the scalar product can be written as [6,9]

〈M| F ∗ · d |µ〉 =
∑
q

(
Fq
)∗ 〈M| dq |µ〉 (A.7)

Further for a matrix element〈M| dq |µ〉 we can apply the Wigner–Eckart theorem [6,9]. It allows us to
separate the angular and dynamical part of this matrix element. What does this mean? For example, in
classical physics if one wants to know how effectively an oscillating electric fieldF can excite a linear
dipole oscillatord one must calculate the scalar product(F · d) = Fd cos

(
F̂ d
)
. It means that we can

separate the dynamic partFd that describes the vector magnitude, and the angular part cos
(
F̂ d
)

that
represent their mutual orientation. In the same way in quantum physics the Wigner–Eckart theorem

allows us to achieve the same separation for optical transition from the initial state
∣∣∣J ′′

µ
〉

to excited

state
∣∣J ′M

〉
. Namely,

〈M| dq |µ〉 = 1√
2J ′ + 1

CJ ′M
J

′′
µ1q

〈
J ′∥∥ d

∥∥∥J ′′〉
(A.8)

whereCJ ′M
J

′′
µ1q

is a Clebsch–Gordan coefficient and
〈
J ′∥∥ d

∥∥∥J ′′〉
is a reduced matrix element, that rep-

resents the dynamical part of the optical transition probability. It is obvious that the Clebsch–Gordan
coefficient has a numerical value that depends on the values of the angular-momentum projectionsM

andµ on the quantization axisz, and therefore it describes the angular-momentum orientation in space.
This is the angular part of the transition probability.
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If we now collect all these formulae together we can obtain the final expression that allows us to
calculate easily matrix elements(A.1) for arbitrary light polarization and optical transition between
arbitrary states

fMM ′ = N
∑

µq1q2

(
Fq1

)∗ (
Fq2

)
CJ ′M

J
′′
µ1q1

CJ ′M ′
J

′′
µ1q2

. (A.9)

In this last expression a proportionality coefficientN that is insignificant for the purpose of this paper
is not determined.
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